Loading…
Homogeneity- and density distance-driven active contours for medical image segmentation
Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is...
Saved in:
Published in: | Computers in biology and medicine 2011-05, Vol.41 (5), p.292-301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643 |
container_end_page | 301 |
container_issue | 5 |
container_start_page | 292 |
container_title | Computers in biology and medicine |
container_volume | 41 |
creator | Truc, Phan Tran Ho Kim, Tae-Seong Lee, Sungyoung Lee, Young-Koo |
description | Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast. |
doi_str_mv | 10.1016/j.compbiomed.2011.03.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876236318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0010482511000497</els_id><sourcerecordid>876236318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7uzoX5CAB0_dVjrpdHIRdFF3YcGDiseQTqqHjN3J2OlZmH9vmtllYS96Kop66vMtQiiDmgGT7_e1S9OhD2lCXzfAWA28BpDPyIapTlfQcvGcbAAYVEI17QW5zHkPAAI4vCQXDROKqbbdkF_XaUo7jBiWU0Vt9NRjzMWhPuTFRoeVn8MdRmrdUix1KS7pOGc6pJmW9sHZkYbJ7pBm3E0YF7uEFF-RF4MdM76-t1vy88vnH1fX1e23rzdXH28rJ5RaKlumQOhRa28H30sAp6xtBs29E0Jgr6XVAm3TtV3LnUYtXQlppaV0Vgq-Je_OdQ9z-nPEvJgpZIfjaCOmYzaqkw2XnKl_k5KLRnO-km-fkPuycSxrGAacA1O6DLMl6ky5OeU842AOc7nDfCqQWVUye_OokllVMsBNUamkvrlvcOzX2EPigywF-HQGsJzuLuBssgtYxPBhRrcYn8L_dPnwpIgbQ1z1-o0nzI87mdwYMN_Xb1mfhbH1UXTH_wKB-72L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033018975</pqid></control><display><type>article</type><title>Homogeneity- and density distance-driven active contours for medical image segmentation</title><source>ScienceDirect Journals</source><creator>Truc, Phan Tran Ho ; Kim, Tae-Seong ; Lee, Sungyoung ; Lee, Young-Koo</creator><creatorcontrib>Truc, Phan Tran Ho ; Kim, Tae-Seong ; Lee, Sungyoung ; Lee, Young-Koo</creatorcontrib><description>Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2011.03.006</identifier><identifier>PMID: 21481855</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Active contours ; Algorithms ; Bone and Bones - pathology ; Diagnostic Imaging - methods ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Internal Medicine ; Level set methods ; Magnetic Resonance Imaging - methods ; Medical images ; Medical Informatics - methods ; Models, Statistical ; Other ; Pattern Recognition, Automated - methods ; Phantoms, Imaging ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography, X-Ray Computed - methods</subject><ispartof>Computers in biology and medicine, 2011-05, Vol.41 (5), p.292-301</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</citedby><cites>FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21481855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Truc, Phan Tran Ho</creatorcontrib><creatorcontrib>Kim, Tae-Seong</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><creatorcontrib>Lee, Young-Koo</creatorcontrib><title>Homogeneity- and density distance-driven active contours for medical image segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast.</description><subject>Active contours</subject><subject>Algorithms</subject><subject>Bone and Bones - pathology</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Internal Medicine</subject><subject>Level set methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical images</subject><subject>Medical Informatics - methods</subject><subject>Models, Statistical</subject><subject>Other</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkk2LFDEQhoMo7uzoX5CAB0_dVjrpdHIRdFF3YcGDiseQTqqHjN3J2OlZmH9vmtllYS96Kop66vMtQiiDmgGT7_e1S9OhD2lCXzfAWA28BpDPyIapTlfQcvGcbAAYVEI17QW5zHkPAAI4vCQXDROKqbbdkF_XaUo7jBiWU0Vt9NRjzMWhPuTFRoeVn8MdRmrdUix1KS7pOGc6pJmW9sHZkYbJ7pBm3E0YF7uEFF-RF4MdM76-t1vy88vnH1fX1e23rzdXH28rJ5RaKlumQOhRa28H30sAp6xtBs29E0Jgr6XVAm3TtV3LnUYtXQlppaV0Vgq-Je_OdQ9z-nPEvJgpZIfjaCOmYzaqkw2XnKl_k5KLRnO-km-fkPuycSxrGAacA1O6DLMl6ky5OeU842AOc7nDfCqQWVUye_OokllVMsBNUamkvrlvcOzX2EPigywF-HQGsJzuLuBssgtYxPBhRrcYn8L_dPnwpIgbQ1z1-o0nzI87mdwYMN_Xb1mfhbH1UXTH_wKB-72L</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Truc, Phan Tran Ho</creator><creator>Kim, Tae-Seong</creator><creator>Lee, Sungyoung</creator><creator>Lee, Young-Koo</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20110501</creationdate><title>Homogeneity- and density distance-driven active contours for medical image segmentation</title><author>Truc, Phan Tran Ho ; Kim, Tae-Seong ; Lee, Sungyoung ; Lee, Young-Koo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active contours</topic><topic>Algorithms</topic><topic>Bone and Bones - pathology</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Internal Medicine</topic><topic>Level set methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical images</topic><topic>Medical Informatics - methods</topic><topic>Models, Statistical</topic><topic>Other</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truc, Phan Tran Ho</creatorcontrib><creatorcontrib>Kim, Tae-Seong</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><creatorcontrib>Lee, Young-Koo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truc, Phan Tran Ho</au><au>Kim, Tae-Seong</au><au>Lee, Sungyoung</au><au>Lee, Young-Koo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneity- and density distance-driven active contours for medical image segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>41</volume><issue>5</issue><spage>292</spage><epage>301</epage><pages>292-301</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>21481855</pmid><doi>10.1016/j.compbiomed.2011.03.006</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2011-05, Vol.41 (5), p.292-301 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_876236318 |
source | ScienceDirect Journals |
subjects | Active contours Algorithms Bone and Bones - pathology Diagnostic Imaging - methods Humans Image Processing, Computer-Assisted - methods Image segmentation Internal Medicine Level set methods Magnetic Resonance Imaging - methods Medical images Medical Informatics - methods Models, Statistical Other Pattern Recognition, Automated - methods Phantoms, Imaging Reproducibility of Results Sensitivity and Specificity Tomography, X-Ray Computed - methods |
title | Homogeneity- and density distance-driven active contours for medical image segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneity-%20and%20density%20distance-driven%20active%20contours%20for%20medical%20image%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Truc,%20Phan%20Tran%20Ho&rft.date=2011-05-01&rft.volume=41&rft.issue=5&rft.spage=292&rft.epage=301&rft.pages=292-301&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2011.03.006&rft_dat=%3Cproquest_cross%3E876236318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1033018975&rft_id=info:pmid/21481855&rfr_iscdi=true |