Loading…

Homogeneity- and density distance-driven active contours for medical image segmentation

Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2011-05, Vol.41 (5), p.292-301
Main Authors: Truc, Phan Tran Ho, Kim, Tae-Seong, Lee, Sungyoung, Lee, Young-Koo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643
cites cdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643
container_end_page 301
container_issue 5
container_start_page 292
container_title Computers in biology and medicine
container_volume 41
creator Truc, Phan Tran Ho
Kim, Tae-Seong
Lee, Sungyoung
Lee, Young-Koo
description Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast.
doi_str_mv 10.1016/j.compbiomed.2011.03.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876236318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0010482511000497</els_id><sourcerecordid>876236318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7uzoX5CAB0_dVjrpdHIRdFF3YcGDiseQTqqHjN3J2OlZmH9vmtllYS96Kop66vMtQiiDmgGT7_e1S9OhD2lCXzfAWA28BpDPyIapTlfQcvGcbAAYVEI17QW5zHkPAAI4vCQXDROKqbbdkF_XaUo7jBiWU0Vt9NRjzMWhPuTFRoeVn8MdRmrdUix1KS7pOGc6pJmW9sHZkYbJ7pBm3E0YF7uEFF-RF4MdM76-t1vy88vnH1fX1e23rzdXH28rJ5RaKlumQOhRa28H30sAp6xtBs29E0Jgr6XVAm3TtV3LnUYtXQlppaV0Vgq-Je_OdQ9z-nPEvJgpZIfjaCOmYzaqkw2XnKl_k5KLRnO-km-fkPuycSxrGAacA1O6DLMl6ky5OeU842AOc7nDfCqQWVUye_OokllVMsBNUamkvrlvcOzX2EPigywF-HQGsJzuLuBssgtYxPBhRrcYn8L_dPnwpIgbQ1z1-o0nzI87mdwYMN_Xb1mfhbH1UXTH_wKB-72L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033018975</pqid></control><display><type>article</type><title>Homogeneity- and density distance-driven active contours for medical image segmentation</title><source>ScienceDirect Journals</source><creator>Truc, Phan Tran Ho ; Kim, Tae-Seong ; Lee, Sungyoung ; Lee, Young-Koo</creator><creatorcontrib>Truc, Phan Tran Ho ; Kim, Tae-Seong ; Lee, Sungyoung ; Lee, Young-Koo</creatorcontrib><description>Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2011.03.006</identifier><identifier>PMID: 21481855</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Active contours ; Algorithms ; Bone and Bones - pathology ; Diagnostic Imaging - methods ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Internal Medicine ; Level set methods ; Magnetic Resonance Imaging - methods ; Medical images ; Medical Informatics - methods ; Models, Statistical ; Other ; Pattern Recognition, Automated - methods ; Phantoms, Imaging ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography, X-Ray Computed - methods</subject><ispartof>Computers in biology and medicine, 2011-05, Vol.41 (5), p.292-301</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</citedby><cites>FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21481855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Truc, Phan Tran Ho</creatorcontrib><creatorcontrib>Kim, Tae-Seong</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><creatorcontrib>Lee, Young-Koo</creatorcontrib><title>Homogeneity- and density distance-driven active contours for medical image segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast.</description><subject>Active contours</subject><subject>Algorithms</subject><subject>Bone and Bones - pathology</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Internal Medicine</subject><subject>Level set methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical images</subject><subject>Medical Informatics - methods</subject><subject>Models, Statistical</subject><subject>Other</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkk2LFDEQhoMo7uzoX5CAB0_dVjrpdHIRdFF3YcGDiseQTqqHjN3J2OlZmH9vmtllYS96Kop66vMtQiiDmgGT7_e1S9OhD2lCXzfAWA28BpDPyIapTlfQcvGcbAAYVEI17QW5zHkPAAI4vCQXDROKqbbdkF_XaUo7jBiWU0Vt9NRjzMWhPuTFRoeVn8MdRmrdUix1KS7pOGc6pJmW9sHZkYbJ7pBm3E0YF7uEFF-RF4MdM76-t1vy88vnH1fX1e23rzdXH28rJ5RaKlumQOhRa28H30sAp6xtBs29E0Jgr6XVAm3TtV3LnUYtXQlppaV0Vgq-Je_OdQ9z-nPEvJgpZIfjaCOmYzaqkw2XnKl_k5KLRnO-km-fkPuycSxrGAacA1O6DLMl6ky5OeU842AOc7nDfCqQWVUye_OokllVMsBNUamkvrlvcOzX2EPigywF-HQGsJzuLuBssgtYxPBhRrcYn8L_dPnwpIgbQ1z1-o0nzI87mdwYMN_Xb1mfhbH1UXTH_wKB-72L</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Truc, Phan Tran Ho</creator><creator>Kim, Tae-Seong</creator><creator>Lee, Sungyoung</creator><creator>Lee, Young-Koo</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20110501</creationdate><title>Homogeneity- and density distance-driven active contours for medical image segmentation</title><author>Truc, Phan Tran Ho ; Kim, Tae-Seong ; Lee, Sungyoung ; Lee, Young-Koo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active contours</topic><topic>Algorithms</topic><topic>Bone and Bones - pathology</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Internal Medicine</topic><topic>Level set methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical images</topic><topic>Medical Informatics - methods</topic><topic>Models, Statistical</topic><topic>Other</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truc, Phan Tran Ho</creatorcontrib><creatorcontrib>Kim, Tae-Seong</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><creatorcontrib>Lee, Young-Koo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truc, Phan Tran Ho</au><au>Kim, Tae-Seong</au><au>Lee, Sungyoung</au><au>Lee, Young-Koo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneity- and density distance-driven active contours for medical image segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>41</volume><issue>5</issue><spage>292</spage><epage>301</epage><pages>292-301</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract In this paper, we present a novel active contour (AC) model for medical image segmentation that is based on a convex combination of two energy functionals to both minimize the inhomogeneity within an object and maximize the distance between the object and the background. This combination is necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while distinct organs should generate distinct image configurations. Compared with the conventional Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs better in an MRI data set, which is generally in lower contrast.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>21481855</pmid><doi>10.1016/j.compbiomed.2011.03.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2011-05, Vol.41 (5), p.292-301
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_876236318
source ScienceDirect Journals
subjects Active contours
Algorithms
Bone and Bones - pathology
Diagnostic Imaging - methods
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Internal Medicine
Level set methods
Magnetic Resonance Imaging - methods
Medical images
Medical Informatics - methods
Models, Statistical
Other
Pattern Recognition, Automated - methods
Phantoms, Imaging
Reproducibility of Results
Sensitivity and Specificity
Tomography, X-Ray Computed - methods
title Homogeneity- and density distance-driven active contours for medical image segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneity-%20and%20density%20distance-driven%20active%20contours%20for%20medical%20image%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Truc,%20Phan%20Tran%20Ho&rft.date=2011-05-01&rft.volume=41&rft.issue=5&rft.spage=292&rft.epage=301&rft.pages=292-301&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2011.03.006&rft_dat=%3Cproquest_cross%3E876236318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-a185e0be99dafdb600c8aa2f93dc444eb96a94ea275753c9e96c3dc98966ca643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1033018975&rft_id=info:pmid/21481855&rfr_iscdi=true