Loading…
Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication
Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short-range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experime...
Saved in:
Published in: | Molecular ecology 2011-05, Vol.20 (10), p.2204-2216 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4408-77493b1e240638662b35e66fb9cc2a7d151aa0862559b0a6a55440657eb0dab33 |
---|---|
cites | |
container_end_page | 2216 |
container_issue | 10 |
container_start_page | 2204 |
container_title | Molecular ecology |
container_volume | 20 |
creator | Virant-Doberlet, Meta King, R. Andrew Polajnar, Jernej Symondson, William O.C |
description | Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short-range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle-web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey. |
doi_str_mv | 10.1111/j.1365-294X.2011.05038.x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_876244376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864960096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4408-77493b1e240638662b35e66fb9cc2a7d151aa0862559b0a6a55440657eb0dab33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCXwCLC6ek_ogd58ABRaWlasuhVPQ2chLv4iVf2EnJ_nvsbtkDl_oy1szzjmbmRQhTktLwTrcp5VIkrMjuU0YoTYkgXKXLC7Q6FF6iFSkkSyhR_Agde78lhHImxGt0xCgXjCu1QpvroTX13GqHG6s3_eAnW3vszIPRLfajbYzzePqpJ2yWsR3shEdndvjBVk5PdugjZTcheDx702DbY2-WOaTroevm3taP2Bv0ah0Y8_YpnqC7L2ffy4vk6tv51_LzVVJnGVFJnmcFr6hhGZFcSckqLoyU66qoa6bzhgqqNVEyrFFUREstRNBJkZuKNLri_AR93Pcd3fB7Nn6CzvratK3uzTB7ULlkWcZz-Twps0KScMJAfviP3A6ziytHSDAlVBGgd0_QXHWmgdHZTrsd_Dt1AD7tgT-2NbtDnRKIlsIWonMQnYNoKTxaCgtcn5XxF_TJXm_9ZJaDXrtfIHOeC_hxcw6EX96XpbyFOND7Pb_WA-iNsx7ubkNnTmghJAlD_QX8Gay2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864528589</pqid></control><display><type>article</type><title>Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication</title><source>Wiley</source><creator>Virant-Doberlet, Meta ; King, R. Andrew ; Polajnar, Jernej ; Symondson, William O.C</creator><creatorcontrib>Virant-Doberlet, Meta ; King, R. Andrew ; Polajnar, Jernej ; Symondson, William O.C</creatorcontrib><description>Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short-range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle-web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/j.1365-294X.2011.05038.x</identifier><identifier>PMID: 21352388</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal Communication ; Animal reproduction ; Animals ; Aphrodes ; Araneae ; Arthropoda ; digestive system ; DNA primers ; eavesdropping ; evolution ; Female ; generalist predators ; gut content analysis ; Hemiptera - physiology ; imagos ; leafhoppers ; Male ; nymphs ; polymerase chain reaction ; Predation ; predator-prey interactions ; predator-prey relationships ; predatory arthropods ; Predatory Behavior - physiology ; Spiders ; Spiders - physiology ; Theridiidae ; Vibration ; vibrational communication</subject><ispartof>Molecular ecology, 2011-05, Vol.20 (10), p.2204-2216</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2011 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4408-77493b1e240638662b35e66fb9cc2a7d151aa0862559b0a6a55440657eb0dab33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21352388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Virant-Doberlet, Meta</creatorcontrib><creatorcontrib>King, R. Andrew</creatorcontrib><creatorcontrib>Polajnar, Jernej</creatorcontrib><creatorcontrib>Symondson, William O.C</creatorcontrib><title>Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short-range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle-web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.</description><subject>Animal Communication</subject><subject>Animal reproduction</subject><subject>Animals</subject><subject>Aphrodes</subject><subject>Araneae</subject><subject>Arthropoda</subject><subject>digestive system</subject><subject>DNA primers</subject><subject>eavesdropping</subject><subject>evolution</subject><subject>Female</subject><subject>generalist predators</subject><subject>gut content analysis</subject><subject>Hemiptera - physiology</subject><subject>imagos</subject><subject>leafhoppers</subject><subject>Male</subject><subject>nymphs</subject><subject>polymerase chain reaction</subject><subject>Predation</subject><subject>predator-prey interactions</subject><subject>predator-prey relationships</subject><subject>predatory arthropods</subject><subject>Predatory Behavior - physiology</subject><subject>Spiders</subject><subject>Spiders - physiology</subject><subject>Theridiidae</subject><subject>Vibration</subject><subject>vibrational communication</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EotvCXwCLC6ek_ogd58ABRaWlasuhVPQ2chLv4iVf2EnJ_nvsbtkDl_oy1szzjmbmRQhTktLwTrcp5VIkrMjuU0YoTYkgXKXLC7Q6FF6iFSkkSyhR_Agde78lhHImxGt0xCgXjCu1QpvroTX13GqHG6s3_eAnW3vszIPRLfajbYzzePqpJ2yWsR3shEdndvjBVk5PdugjZTcheDx702DbY2-WOaTroevm3taP2Bv0ah0Y8_YpnqC7L2ffy4vk6tv51_LzVVJnGVFJnmcFr6hhGZFcSckqLoyU66qoa6bzhgqqNVEyrFFUREstRNBJkZuKNLri_AR93Pcd3fB7Nn6CzvratK3uzTB7ULlkWcZz-Twps0KScMJAfviP3A6ziytHSDAlVBGgd0_QXHWmgdHZTrsd_Dt1AD7tgT-2NbtDnRKIlsIWonMQnYNoKTxaCgtcn5XxF_TJXm_9ZJaDXrtfIHOeC_hxcw6EX96XpbyFOND7Pb_WA-iNsx7ubkNnTmghJAlD_QX8Gay2</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Virant-Doberlet, Meta</creator><creator>King, R. Andrew</creator><creator>Polajnar, Jernej</creator><creator>Symondson, William O.C</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201105</creationdate><title>Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication</title><author>Virant-Doberlet, Meta ; King, R. Andrew ; Polajnar, Jernej ; Symondson, William O.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4408-77493b1e240638662b35e66fb9cc2a7d151aa0862559b0a6a55440657eb0dab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal Communication</topic><topic>Animal reproduction</topic><topic>Animals</topic><topic>Aphrodes</topic><topic>Araneae</topic><topic>Arthropoda</topic><topic>digestive system</topic><topic>DNA primers</topic><topic>eavesdropping</topic><topic>evolution</topic><topic>Female</topic><topic>generalist predators</topic><topic>gut content analysis</topic><topic>Hemiptera - physiology</topic><topic>imagos</topic><topic>leafhoppers</topic><topic>Male</topic><topic>nymphs</topic><topic>polymerase chain reaction</topic><topic>Predation</topic><topic>predator-prey interactions</topic><topic>predator-prey relationships</topic><topic>predatory arthropods</topic><topic>Predatory Behavior - physiology</topic><topic>Spiders</topic><topic>Spiders - physiology</topic><topic>Theridiidae</topic><topic>Vibration</topic><topic>vibrational communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virant-Doberlet, Meta</creatorcontrib><creatorcontrib>King, R. Andrew</creatorcontrib><creatorcontrib>Polajnar, Jernej</creatorcontrib><creatorcontrib>Symondson, William O.C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virant-Doberlet, Meta</au><au>King, R. Andrew</au><au>Polajnar, Jernej</au><au>Symondson, William O.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2011-05</date><risdate>2011</risdate><volume>20</volume><issue>10</issue><spage>2204</spage><epage>2216</epage><pages>2204-2216</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short-range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle-web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21352388</pmid><doi>10.1111/j.1365-294X.2011.05038.x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2011-05, Vol.20 (10), p.2204-2216 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_876244376 |
source | Wiley |
subjects | Animal Communication Animal reproduction Animals Aphrodes Araneae Arthropoda digestive system DNA primers eavesdropping evolution Female generalist predators gut content analysis Hemiptera - physiology imagos leafhoppers Male nymphs polymerase chain reaction Predation predator-prey interactions predator-prey relationships predatory arthropods Predatory Behavior - physiology Spiders Spiders - physiology Theridiidae Vibration vibrational communication |
title | Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20diagnostics%20reveal%20spiders%20that%20exploit%20prey%20vibrational%20signals%20used%20in%20sexual%20communication&rft.jtitle=Molecular%20ecology&rft.au=Virant-Doberlet,%20Meta&rft.date=2011-05&rft.volume=20&rft.issue=10&rft.spage=2204&rft.epage=2216&rft.pages=2204-2216&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/j.1365-294X.2011.05038.x&rft_dat=%3Cproquest_pubme%3E864960096%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4408-77493b1e240638662b35e66fb9cc2a7d151aa0862559b0a6a55440657eb0dab33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864528589&rft_id=info:pmid/21352388&rfr_iscdi=true |