Loading…
Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering
In this study, a nanostructured scaffold was designed for bone repair using hydroxyapatite (HA) and gelatin (GEL) as its main components. Nanopowders of HA were synthesized, and together with GEL, used to engineer a 3-dimensional nanocomposite combining 3 techniques of layer solvent casting, freeze-...
Saved in:
Published in: | International journal of artificial organs 2010-02, Vol.33 (2), p.86-95 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a nanostructured scaffold was designed for bone repair using hydroxyapatite (HA) and gelatin (GEL) as its main components. Nanopowders of HA were synthesized, and together with GEL, used to engineer a 3-dimensional nanocomposite combining 3 techniques of layer solvent casting, freeze-drying, and lamination. The results show that the scaffold possesses a 3-dimensional interconnected homogenous porous structure with a porosity of 82% and pore sizes ranging from 300 to 500 mum. It has also been shown that mechanical indices are in the range of spongy bones. Cultured osteoblast-like cells (SaOS-2) have shown an excellent level of cell attachment, migration, and penetration into the porosities of the nanocomposite scaffold. Here, we have shown that by a combination of widely available methods with simple experimental operations, nano-HA powders can be synthesized and used to make 3-dimensional HA/GEL nanocomposites in any desired shape, with mechanical properties comparable to spongy bone. |
---|---|
ISSN: | 0391-3988 1724-6040 |
DOI: | 10.1177/039139881003300204 |