Loading…
Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly
Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated fr...
Saved in:
Published in: | Nano letters 2011-07, Vol.11 (7), p.2856-2864 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a476t-f747275e47a4edf41b9f740537afe8e5e53f37b63ac945c398ee2db02d84cb103 |
---|---|
cites | cdi_FETCH-LOGICAL-a476t-f747275e47a4edf41b9f740537afe8e5e53f37b63ac945c398ee2db02d84cb103 |
container_end_page | 2864 |
container_issue | 7 |
container_start_page | 2856 |
container_title | Nano letters |
container_volume | 11 |
creator | Jasieniak, Jacek MacDonald, Brandon I Watkins, Scott E Mulvaney, Paul |
description | Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of ∼70 nm. Through capacitance–voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized. |
doi_str_mv | 10.1021/nl201282v |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876796934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753478191</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-f747275e47a4edf41b9f740537afe8e5e53f37b63ac945c398ee2db02d84cb103</originalsourceid><addsrcrecordid>eNqN0U1LwzAYB_AgipvTg19AehH1UM1r0xzH8A2GE6bnkqZPoaNrZtIO-u2Nbm4XEU_5E355kjwPQucE3xJMyV1TU0xoStcHaEgEw3GiFD3c5ZQP0In3C4yxYgIfowElCVGY4iGazW3dtZVt4ldnDXgPRTSvmhZcCC-6scb1vtV1FJx20QTq2kfrSkdT3YOL8z7-DtE4nFzmdX-KjkpdezjbriP0_nD_NnmKp7PH58l4GmsukzYuJZdUCuBScyhKTnIVtrBgUpeQggDBSibzhGmjuDBMpQC0yDEtUm5ygtkIXW3qrpz96MC32bLyJrxON2A7n6UykSpRjAd5_ackUoSmCIrlvyiXKVEk0JsNNc5676DMVq5aatdnBGdfQ8l2Qwn2Ylu2y5dQ7OTPFAK43ALtja5LpxtT-b3j4RtSkL3TxmcL27kmtPiXCz8BWRae1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753478191</pqid></control><display><type>article</type><title>Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jasieniak, Jacek ; MacDonald, Brandon I ; Watkins, Scott E ; Mulvaney, Paul</creator><creatorcontrib>Jasieniak, Jacek ; MacDonald, Brandon I ; Watkins, Scott E ; Mulvaney, Paul</creatorcontrib><description>Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of ∼70 nm. Through capacitance–voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl201282v</identifier><identifier>PMID: 21619020</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cadmium Compounds - chemistry ; Cadmium tellurides ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Electric Power Supplies ; Energy ; Exact sciences and technology ; Heat treatment ; Materials science ; Membranes, Artificial ; Methods of nanofabrication ; Nanocrystalline materials ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Natural energy ; Particle Size ; Photovoltaic cells ; Photovoltaic conversion ; Physics ; Semiconductors ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar Energy ; Solutions ; Surface Properties ; Tellurium - chemistry ; Temperature ; Vacuum ; Zinc Oxide - chemistry</subject><ispartof>Nano letters, 2011-07, Vol.11 (7), p.2856-2864</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-f747275e47a4edf41b9f740537afe8e5e53f37b63ac945c398ee2db02d84cb103</citedby><cites>FETCH-LOGICAL-a476t-f747275e47a4edf41b9f740537afe8e5e53f37b63ac945c398ee2db02d84cb103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24343751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21619020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jasieniak, Jacek</creatorcontrib><creatorcontrib>MacDonald, Brandon I</creatorcontrib><creatorcontrib>Watkins, Scott E</creatorcontrib><creatorcontrib>Mulvaney, Paul</creatorcontrib><title>Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of ∼70 nm. Through capacitance–voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized.</description><subject>Applied sciences</subject><subject>Cadmium Compounds - chemistry</subject><subject>Cadmium tellurides</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Electric Power Supplies</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>Materials science</subject><subject>Membranes, Artificial</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Natural energy</subject><subject>Particle Size</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar Energy</subject><subject>Solutions</subject><subject>Surface Properties</subject><subject>Tellurium - chemistry</subject><subject>Temperature</subject><subject>Vacuum</subject><subject>Zinc Oxide - chemistry</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LwzAYB_AgipvTg19AehH1UM1r0xzH8A2GE6bnkqZPoaNrZtIO-u2Nbm4XEU_5E355kjwPQucE3xJMyV1TU0xoStcHaEgEw3GiFD3c5ZQP0In3C4yxYgIfowElCVGY4iGazW3dtZVt4ldnDXgPRTSvmhZcCC-6scb1vtV1FJx20QTq2kfrSkdT3YOL8z7-DtE4nFzmdX-KjkpdezjbriP0_nD_NnmKp7PH58l4GmsukzYuJZdUCuBScyhKTnIVtrBgUpeQggDBSibzhGmjuDBMpQC0yDEtUm5ygtkIXW3qrpz96MC32bLyJrxON2A7n6UykSpRjAd5_ackUoSmCIrlvyiXKVEk0JsNNc5676DMVq5aatdnBGdfQ8l2Qwn2Ylu2y5dQ7OTPFAK43ALtja5LpxtT-b3j4RtSkL3TxmcL27kmtPiXCz8BWRae1A</recordid><startdate>20110713</startdate><enddate>20110713</enddate><creator>Jasieniak, Jacek</creator><creator>MacDonald, Brandon I</creator><creator>Watkins, Scott E</creator><creator>Mulvaney, Paul</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110713</creationdate><title>Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly</title><author>Jasieniak, Jacek ; MacDonald, Brandon I ; Watkins, Scott E ; Mulvaney, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-f747275e47a4edf41b9f740537afe8e5e53f37b63ac945c398ee2db02d84cb103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Cadmium Compounds - chemistry</topic><topic>Cadmium tellurides</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Electric Power Supplies</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>Materials science</topic><topic>Membranes, Artificial</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Natural energy</topic><topic>Particle Size</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar Energy</topic><topic>Solutions</topic><topic>Surface Properties</topic><topic>Tellurium - chemistry</topic><topic>Temperature</topic><topic>Vacuum</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasieniak, Jacek</creatorcontrib><creatorcontrib>MacDonald, Brandon I</creatorcontrib><creatorcontrib>Watkins, Scott E</creatorcontrib><creatorcontrib>Mulvaney, Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasieniak, Jacek</au><au>MacDonald, Brandon I</au><au>Watkins, Scott E</au><au>Mulvaney, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-07-13</date><risdate>2011</risdate><volume>11</volume><issue>7</issue><spage>2856</spage><epage>2864</epage><pages>2856-2864</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 °C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of ∼70 nm. Through capacitance–voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21619020</pmid><doi>10.1021/nl201282v</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2011-07, Vol.11 (7), p.2856-2864 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_876796934 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Cadmium Compounds - chemistry Cadmium tellurides Cross-disciplinary physics: materials science rheology Crystallites Electric Power Supplies Energy Exact sciences and technology Heat treatment Materials science Membranes, Artificial Methods of nanofabrication Nanocrystalline materials Nanocrystals Nanoscale materials and structures: fabrication and characterization Nanostructure Nanostructures - chemistry Nanotechnology Natural energy Particle Size Photovoltaic cells Photovoltaic conversion Physics Semiconductors Solar cells Solar cells. Photoelectrochemical cells Solar Energy Solutions Surface Properties Tellurium - chemistry Temperature Vacuum Zinc Oxide - chemistry |
title | Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-Processed%20Sintered%20Nanocrystal%20Solar%20Cells%20via%20Layer-by-Layer%20Assembly&rft.jtitle=Nano%20letters&rft.au=Jasieniak,%20Jacek&rft.date=2011-07-13&rft.volume=11&rft.issue=7&rft.spage=2856&rft.epage=2864&rft.pages=2856-2864&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl201282v&rft_dat=%3Cproquest_cross%3E1753478191%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a476t-f747275e47a4edf41b9f740537afe8e5e53f37b63ac945c398ee2db02d84cb103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753478191&rft_id=info:pmid/21619020&rfr_iscdi=true |