Loading…

Sustained release of ganciclovir and foscarnet from biodegradable scleral plugs for the treatment of cytomegalovirus retinitis

Abstract The purpose of this report was to develop solvent-free biodegradable scleral plugs for simultaneous ganciclovir and foscarnet delivery for cytomegalovirus retinitis treatment. To fabricate a biodegradable plug, polylactide–polyglycolide copolymers were pre-mixed with the drugs. The mixture...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2010-03, Vol.31 (7), p.1773-1779
Main Authors: Peng, Yi-Jie, Wen, Chin-Wei, Chiou, Shih-Hwa, Liu, Shih-Jung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The purpose of this report was to develop solvent-free biodegradable scleral plugs for simultaneous ganciclovir and foscarnet delivery for cytomegalovirus retinitis treatment. To fabricate a biodegradable plug, polylactide–polyglycolide copolymers were pre-mixed with the drugs. The mixture was then compression molded and sintered to form a compact scleral plug. The drug release features were monitored with HPLC assay both in vitro and in vivo. Both drugs showed a biphasic release curvature with an initial burst and followed by a second sustained release phase and maintained at therapeutic level for 3–4 weeks. As compared to ganciclovir, foscarnet was released faster in initial phase, but later, showed extended retention in vitreous humor. For biocompatibility analysis, dark-adapted flash electroretinography was performed, and the a-wave and b-wave amplitudes were statistically equal before and after the scleral plug implantation. Finally, serial microstructure changes of releasing scleral plugs were evaluated with scanning electron microscope. The scleral plug surface showed progressive transformation from granular solid surface to smoothen and cavitated appearance.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2009.11.039