Loading…
Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation
The pathway of formic acid electrooxidation strongly depends on the amount of three neighbouring Pt or Pd atoms in the surface of Pd- or Pt-based catalysts. Here, Pt decorated Pd/C nanoparticles (the optimal atomic ratio, Pd : Pt = 20 : 1) were designed and then synthesized through a facile galvanic...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2011-08, Vol.13 (30), p.13594-13597 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The pathway of formic acid electrooxidation strongly depends on the amount of three neighbouring Pt or Pd atoms in the surface of Pd- or Pt-based catalysts. Here, Pt decorated Pd/C nanoparticles (the optimal atomic ratio, Pd : Pt = 20 : 1) were designed and then synthesized through a facile galvanic replacement reaction where the amount of three neighbouring Pt or Pd atoms markedly decreased. As a result, discontinuous Pd and Pt atoms suppressed CO formation and exhibited unprecedented catalytic activity and stability toward formic acid electrooxidation while the cost was almost the same as that of Pd/C. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c1cp21680e |