Loading…

A two-step estimator for large approximate dynamic factor models based on Kalman filtering

This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large ( n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimate...

Full description

Saved in:
Bibliographic Details
Published in:Econometrics 2011-09, Vol.164 (1), p.188-205
Main Authors: Doz, Catherine, Giannone, Domenico, Reichlin, Lucrezia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c610t-a634511e625db8b3f98a84bd3b4fe041466def62d958132e7d62e52925df9e9f3
cites cdi_FETCH-LOGICAL-c610t-a634511e625db8b3f98a84bd3b4fe041466def62d958132e7d62e52925df9e9f3
container_end_page 205
container_issue 1
container_start_page 188
container_title Econometrics
container_volume 164
creator Doz, Catherine
Giannone, Domenico
Reichlin, Lucrezia
description This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large ( n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimated via the Kalman smoother. The analysis develops the theory for the estimator considered in Giannone et al. (2004) and Giannone et al. (2008) and for the many empirical papers using this framework for nowcasting.
doi_str_mv 10.1016/j.jeconom.2011.02.012
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_879095972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440761100039X</els_id><sourcerecordid>2425851441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-a634511e625db8b3f98a84bd3b4fe041466def62d958132e7d62e52925df9e9f3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYsoOK5-BKEIIj50zL-m6ZMMy-rKDviiL76ENL3ZTWmbmnRmnW_v7XaYB18M3AQuv3NyLyfL3lKypYTKT922AxvGMGwZoXRL2JZQ9izbUFWxQqq6fJ5tCCeiEKSSL7NXKXWEkFIovsl-7fL5MRRphimHNPvBzCHmDqs38R5yM00x_FnakLen0Qze5s7YBRpCC33KG5OgzcOY35l-MGPufD9D9OP96-yFM32CN-f3Kvv55ebH9W2x__712_VuX1hJyVwYyUVJKUhWto1quKuVUaJpeSMcEEGFlC04ydq6VJQzqFrJoGQ14q6G2vGr7OPq-2B6PUWcNZ50MF7f7vZ66RGihFCUHimyH1YWt_p9wIX14JOFvjcjhEPSqqpJXdYVQ_LdP2QXDnHERbRSHIcSZYVQuUI2hpQiuMv_lOglG93pczZ6yUYTpjEb1N2tuggT2IsI8KzwUXNDpcD7hPUk5bgRNrGm5VUKHUv9MA_o9v48qknW9C6a0fp0cWVCSCZrjtznlcPY4Ogh6mQ9jBZaH8HOug3-P3P_BUxJv3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883466457</pqid></control><display><type>article</type><title>A two-step estimator for large approximate dynamic factor models based on Kalman filtering</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><source>Elsevier SD Backfile Economics</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Doz, Catherine ; Giannone, Domenico ; Reichlin, Lucrezia</creator><creatorcontrib>Doz, Catherine ; Giannone, Domenico ; Reichlin, Lucrezia</creatorcontrib><description>This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large ( n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimated via the Kalman smoother. The analysis develops the theory for the estimator considered in Giannone et al. (2004) and Giannone et al. (2008) and for the many empirical papers using this framework for nowcasting.</description><identifier>ISSN: 0304-4076</identifier><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 1872-6895</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.1016/j.jeconom.2011.02.012</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Distribution theory ; Dynamic models ; Econometric models ; Econometrics ; Estimating techniques ; Estimation ; Exact sciences and technology ; Factor analysis ; Factor models ; Factor models Kalman filter Principal components Large cross-sections ; Inference from stochastic processes; time series analysis ; Insurance, economics, finance ; Kalman filter ; Kalman filters ; Large cross-sections ; Mathematics ; Model testing ; Multivariate analysis ; Panel data ; Principal components ; Principal components analysis ; Probability and statistics ; Probability theory ; Quantitative Finance ; Regression analysis ; Sciences and techniques of general use ; Significance tests ; Statistical Finance ; Statistical models ; Statistics ; Studies ; Time series</subject><ispartof>Econometrics, 2011-09, Vol.164 (1), p.188-205</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-a634511e625db8b3f98a84bd3b4fe041466def62d958132e7d62e52925df9e9f3</citedby><cites>FETCH-LOGICAL-c610t-a634511e625db8b3f98a84bd3b4fe041466def62d958132e7d62e52925df9e9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030440761100039X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3447,3551,23911,23912,25120,27903,27904,33202,33203,45971,45981</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24462693$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a164_3ay_3a2011_3ai_3a1_3ap_3a188-205.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00844811$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Doz, Catherine</creatorcontrib><creatorcontrib>Giannone, Domenico</creatorcontrib><creatorcontrib>Reichlin, Lucrezia</creatorcontrib><title>A two-step estimator for large approximate dynamic factor models based on Kalman filtering</title><title>Econometrics</title><description>This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large ( n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimated via the Kalman smoother. The analysis develops the theory for the estimator considered in Giannone et al. (2004) and Giannone et al. (2008) and for the many empirical papers using this framework for nowcasting.</description><subject>Applications</subject><subject>Distribution theory</subject><subject>Dynamic models</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Factor analysis</subject><subject>Factor models</subject><subject>Factor models Kalman filter Principal components Large cross-sections</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Insurance, economics, finance</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Large cross-sections</subject><subject>Mathematics</subject><subject>Model testing</subject><subject>Multivariate analysis</subject><subject>Panel data</subject><subject>Principal components</subject><subject>Principal components analysis</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Quantitative Finance</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Significance tests</subject><subject>Statistical Finance</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Studies</subject><subject>Time series</subject><issn>0304-4076</issn><issn>2225-1146</issn><issn>1872-6895</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkV-L1DAUxYsoOK5-BKEIIj50zL-m6ZMMy-rKDviiL76ENL3ZTWmbmnRmnW_v7XaYB18M3AQuv3NyLyfL3lKypYTKT922AxvGMGwZoXRL2JZQ9izbUFWxQqq6fJ5tCCeiEKSSL7NXKXWEkFIovsl-7fL5MRRphimHNPvBzCHmDqs38R5yM00x_FnakLen0Qze5s7YBRpCC33KG5OgzcOY35l-MGPufD9D9OP96-yFM32CN-f3Kvv55ebH9W2x__712_VuX1hJyVwYyUVJKUhWto1quKuVUaJpeSMcEEGFlC04ydq6VJQzqFrJoGQ14q6G2vGr7OPq-2B6PUWcNZ50MF7f7vZ66RGihFCUHimyH1YWt_p9wIX14JOFvjcjhEPSqqpJXdYVQ_LdP2QXDnHERbRSHIcSZYVQuUI2hpQiuMv_lOglG93pczZ6yUYTpjEb1N2tuggT2IsI8KzwUXNDpcD7hPUk5bgRNrGm5VUKHUv9MA_o9v48qknW9C6a0fp0cWVCSCZrjtznlcPY4Ogh6mQ9jBZaH8HOug3-P3P_BUxJv3g</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Doz, Catherine</creator><creator>Giannone, Domenico</creator><creator>Reichlin, Lucrezia</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><general>MDPI</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110901</creationdate><title>A two-step estimator for large approximate dynamic factor models based on Kalman filtering</title><author>Doz, Catherine ; Giannone, Domenico ; Reichlin, Lucrezia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-a634511e625db8b3f98a84bd3b4fe041466def62d958132e7d62e52925df9e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applications</topic><topic>Distribution theory</topic><topic>Dynamic models</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Factor analysis</topic><topic>Factor models</topic><topic>Factor models Kalman filter Principal components Large cross-sections</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Insurance, economics, finance</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Large cross-sections</topic><topic>Mathematics</topic><topic>Model testing</topic><topic>Multivariate analysis</topic><topic>Panel data</topic><topic>Principal components</topic><topic>Principal components analysis</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Quantitative Finance</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Significance tests</topic><topic>Statistical Finance</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doz, Catherine</creatorcontrib><creatorcontrib>Giannone, Domenico</creatorcontrib><creatorcontrib>Reichlin, Lucrezia</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doz, Catherine</au><au>Giannone, Domenico</au><au>Reichlin, Lucrezia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-step estimator for large approximate dynamic factor models based on Kalman filtering</atitle><jtitle>Econometrics</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>164</volume><issue>1</issue><spage>188</spage><epage>205</epage><pages>188-205</pages><issn>0304-4076</issn><issn>2225-1146</issn><eissn>1872-6895</eissn><eissn>2225-1146</eissn><coden>JECMB6</coden><abstract>This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large ( n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimated via the Kalman smoother. The analysis develops the theory for the estimator considered in Giannone et al. (2004) and Giannone et al. (2008) and for the many empirical papers using this framework for nowcasting.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2011.02.012</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Econometrics, 2011-09, Vol.164 (1), p.188-205
issn 0304-4076
2225-1146
1872-6895
2225-1146
language eng
recordid cdi_proquest_miscellaneous_879095972
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection; Elsevier SD Backfile Economics; Backfile Package - Mathematics (Legacy) [YMT]
subjects Applications
Distribution theory
Dynamic models
Econometric models
Econometrics
Estimating techniques
Estimation
Exact sciences and technology
Factor analysis
Factor models
Factor models Kalman filter Principal components Large cross-sections
Inference from stochastic processes
time series analysis
Insurance, economics, finance
Kalman filter
Kalman filters
Large cross-sections
Mathematics
Model testing
Multivariate analysis
Panel data
Principal components
Principal components analysis
Probability and statistics
Probability theory
Quantitative Finance
Regression analysis
Sciences and techniques of general use
Significance tests
Statistical Finance
Statistical models
Statistics
Studies
Time series
title A two-step estimator for large approximate dynamic factor models based on Kalman filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-step%20estimator%20for%20large%20approximate%20dynamic%20factor%20models%20based%20on%20Kalman%20filtering&rft.jtitle=Econometrics&rft.au=Doz,%20Catherine&rft.date=2011-09-01&rft.volume=164&rft.issue=1&rft.spage=188&rft.epage=205&rft.pages=188-205&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2011.02.012&rft_dat=%3Cproquest_hal_p%3E2425851441%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c610t-a634511e625db8b3f98a84bd3b4fe041466def62d958132e7d62e52925df9e9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883466457&rft_id=info:pmid/&rfr_iscdi=true