Loading…

Toxicokinetic parameters of toluene in the rat and guinea pig: a comparative study

Toluene is the most widely used industrial solvent. It has been shown to cause cochlear disruptions in rats but markedly less ototoxic effects in guinea pigs. Susceptibility to the ototoxic properties of toluene is, therefore, species specific. In recent publications, an important difference in the...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and pharmacology 2005-05, Vol.19 (3), p.555-559
Main Authors: Campo, P., Blachère, V., Payan, J.P., Pouyatos, B., Lataye, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Toluene is the most widely used industrial solvent. It has been shown to cause cochlear disruptions in rats but markedly less ototoxic effects in guinea pigs. Susceptibility to the ototoxic properties of toluene is, therefore, species specific. In recent publications, an important difference in the solvent concentration in blood has been identified when rats and guinea pigs were exposed in strictly identical experimental conditions. Solvent concentrations in blood were greater in rats than in guinea pigs. The present studies were designed to compare blood affinity and toxicokinetic parameters of toluene in an attempt to understand the susceptibility differences in both species. The in vitro experiment, in which the headspace concentration of toluene was measured within a sealed vial containing blood, highlighted the greater toluene partition coefficient in rat than in guinea pig blood. The in vivo experiment showed that 10 min after a single intravenous administration of 28 μL of toluene, the solvent concentration is approximately two-fold lower in guinea pig than in rat blood. Based on the toxicokinetic parameters of toluene and on the relative partition coefficient of toluene in blood, it seems plausible that guinea pigs are not susceptible to organic solvents because the solvent concentration in blood does not reach the concentration required to induce permanent damage. Attempts to explain differences of vulnerability between the rat and guinea pig are addressed in the present paper.
ISSN:1382-6689
1872-7077
DOI:10.1016/j.etap.2004.12.019