Loading…
Discrete Choquet Integral as a Distance Metric
The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characteriz...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2008-08, Vol.16 (4), p.1107-1110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843 |
container_end_page | 1110 |
container_issue | 4 |
container_start_page | 1107 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 16 |
creator | Bolton, J. Gader, P. Wilson, J.N. |
description | The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral. |
doi_str_mv | 10.1109/TFUZZ.2008.924347 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880648936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4505367</ieee_id><sourcerecordid>34480485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwAxBLxABTyjm-OPaICoVKRSzt0sVy3AukSpNipwP_HocgBgamO-m-9_TuRdElgwljoO6Ws9V6PUkB5ESlyDE_ikZMIUsAOB6HHQRPRA7iNDrzfgvAMGNyFE0eKm8ddRRP39uPA3XxvOnozZk6Nj42cTh3prEUv1DnKnsenZSm9nTxM8fRava4nD4ni9en-fR-kVieZV1iUSEvrMytLDeQigxMWVhVUJHaFDbKqLQEKlEIK1BlYEvOcwJpMDdQSOTj6Hbw3bs-le_0LuSkujYNtQevpQSBUnERyJt_SY4oAWUWwOs_4LY9uCZ8oRVLOUgGPcQGyLrWe0el3rtqZ9ynZqD7ovV30bovWg9FB83VoKmI6JfHLNiJnH8Bbn53tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912308105</pqid></control><display><type>article</type><title>Discrete Choquet Integral as a Distance Metric</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bolton, J. ; Gader, P. ; Wilson, J.N.</creator><creatorcontrib>Bolton, J. ; Gader, P. ; Wilson, J.N.</creatorcontrib><description>The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2008.924347</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bioinformatics ; Choquet integral ; distance measure ; Fuzzy ; Fuzzy logic ; fuzzy measure ; Fuzzy set theory ; Fuzzy systems ; Genomics ; Image retrieval ; Integral equations ; Integrals ; metric ; Military computing ; nonlinear metric ; Nonlinearity ; Stochastic processes ; Sufficient conditions ; Terminology ; Transformations</subject><ispartof>IEEE transactions on fuzzy systems, 2008-08, Vol.16 (4), p.1107-1110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</citedby><cites>FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4505367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bolton, J.</creatorcontrib><creatorcontrib>Gader, P.</creatorcontrib><creatorcontrib>Wilson, J.N.</creatorcontrib><title>Discrete Choquet Integral as a Distance Metric</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral.</description><subject>Bioinformatics</subject><subject>Choquet integral</subject><subject>distance measure</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>fuzzy measure</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Genomics</subject><subject>Image retrieval</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>metric</subject><subject>Military computing</subject><subject>nonlinear metric</subject><subject>Nonlinearity</subject><subject>Stochastic processes</subject><subject>Sufficient conditions</subject><subject>Terminology</subject><subject>Transformations</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEEqXwAxBLxABTyjm-OPaICoVKRSzt0sVy3AukSpNipwP_HocgBgamO-m-9_TuRdElgwljoO6Ws9V6PUkB5ESlyDE_ikZMIUsAOB6HHQRPRA7iNDrzfgvAMGNyFE0eKm8ddRRP39uPA3XxvOnozZk6Nj42cTh3prEUv1DnKnsenZSm9nTxM8fRava4nD4ni9en-fR-kVieZV1iUSEvrMytLDeQigxMWVhVUJHaFDbKqLQEKlEIK1BlYEvOcwJpMDdQSOTj6Hbw3bs-le_0LuSkujYNtQevpQSBUnERyJt_SY4oAWUWwOs_4LY9uCZ8oRVLOUgGPcQGyLrWe0el3rtqZ9ynZqD7ovV30bovWg9FB83VoKmI6JfHLNiJnH8Bbn53tg</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Bolton, J.</creator><creator>Gader, P.</creator><creator>Wilson, J.N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Discrete Choquet Integral as a Distance Metric</title><author>Bolton, J. ; Gader, P. ; Wilson, J.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bioinformatics</topic><topic>Choquet integral</topic><topic>distance measure</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>fuzzy measure</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Genomics</topic><topic>Image retrieval</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>metric</topic><topic>Military computing</topic><topic>nonlinear metric</topic><topic>Nonlinearity</topic><topic>Stochastic processes</topic><topic>Sufficient conditions</topic><topic>Terminology</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolton, J.</creatorcontrib><creatorcontrib>Gader, P.</creatorcontrib><creatorcontrib>Wilson, J.N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolton, J.</au><au>Gader, P.</au><au>Wilson, J.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Choquet Integral as a Distance Metric</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>16</volume><issue>4</issue><spage>1107</spage><epage>1110</epage><pages>1107-1110</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2008.924347</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2008-08, Vol.16 (4), p.1107-1110 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_miscellaneous_880648936 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bioinformatics Choquet integral distance measure Fuzzy Fuzzy logic fuzzy measure Fuzzy set theory Fuzzy systems Genomics Image retrieval Integral equations Integrals metric Military computing nonlinear metric Nonlinearity Stochastic processes Sufficient conditions Terminology Transformations |
title | Discrete Choquet Integral as a Distance Metric |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Choquet%20Integral%20as%20a%20Distance%20Metric&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Bolton,%20J.&rft.date=2008-08-01&rft.volume=16&rft.issue=4&rft.spage=1107&rft.epage=1110&rft.pages=1107-1110&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2008.924347&rft_dat=%3Cproquest_cross%3E34480485%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912308105&rft_id=info:pmid/&rft_ieee_id=4505367&rfr_iscdi=true |