Loading…

Discrete Choquet Integral as a Distance Metric

The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characteriz...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2008-08, Vol.16 (4), p.1107-1110
Main Authors: Bolton, J., Gader, P., Wilson, J.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843
cites cdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843
container_end_page 1110
container_issue 4
container_start_page 1107
container_title IEEE transactions on fuzzy systems
container_volume 16
creator Bolton, J.
Gader, P.
Wilson, J.N.
description The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral.
doi_str_mv 10.1109/TFUZZ.2008.924347
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880648936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4505367</ieee_id><sourcerecordid>34480485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwAxBLxABTyjm-OPaICoVKRSzt0sVy3AukSpNipwP_HocgBgamO-m-9_TuRdElgwljoO6Ws9V6PUkB5ESlyDE_ikZMIUsAOB6HHQRPRA7iNDrzfgvAMGNyFE0eKm8ddRRP39uPA3XxvOnozZk6Nj42cTh3prEUv1DnKnsenZSm9nTxM8fRava4nD4ni9en-fR-kVieZV1iUSEvrMytLDeQigxMWVhVUJHaFDbKqLQEKlEIK1BlYEvOcwJpMDdQSOTj6Hbw3bs-le_0LuSkujYNtQevpQSBUnERyJt_SY4oAWUWwOs_4LY9uCZ8oRVLOUgGPcQGyLrWe0el3rtqZ9ynZqD7ovV30bovWg9FB83VoKmI6JfHLNiJnH8Bbn53tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912308105</pqid></control><display><type>article</type><title>Discrete Choquet Integral as a Distance Metric</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bolton, J. ; Gader, P. ; Wilson, J.N.</creator><creatorcontrib>Bolton, J. ; Gader, P. ; Wilson, J.N.</creatorcontrib><description>The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2008.924347</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bioinformatics ; Choquet integral ; distance measure ; Fuzzy ; Fuzzy logic ; fuzzy measure ; Fuzzy set theory ; Fuzzy systems ; Genomics ; Image retrieval ; Integral equations ; Integrals ; metric ; Military computing ; nonlinear metric ; Nonlinearity ; Stochastic processes ; Sufficient conditions ; Terminology ; Transformations</subject><ispartof>IEEE transactions on fuzzy systems, 2008-08, Vol.16 (4), p.1107-1110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</citedby><cites>FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4505367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bolton, J.</creatorcontrib><creatorcontrib>Gader, P.</creatorcontrib><creatorcontrib>Wilson, J.N.</creatorcontrib><title>Discrete Choquet Integral as a Distance Metric</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral.</description><subject>Bioinformatics</subject><subject>Choquet integral</subject><subject>distance measure</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>fuzzy measure</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Genomics</subject><subject>Image retrieval</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>metric</subject><subject>Military computing</subject><subject>nonlinear metric</subject><subject>Nonlinearity</subject><subject>Stochastic processes</subject><subject>Sufficient conditions</subject><subject>Terminology</subject><subject>Transformations</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEEqXwAxBLxABTyjm-OPaICoVKRSzt0sVy3AukSpNipwP_HocgBgamO-m-9_TuRdElgwljoO6Ws9V6PUkB5ESlyDE_ikZMIUsAOB6HHQRPRA7iNDrzfgvAMGNyFE0eKm8ddRRP39uPA3XxvOnozZk6Nj42cTh3prEUv1DnKnsenZSm9nTxM8fRava4nD4ni9en-fR-kVieZV1iUSEvrMytLDeQigxMWVhVUJHaFDbKqLQEKlEIK1BlYEvOcwJpMDdQSOTj6Hbw3bs-le_0LuSkujYNtQevpQSBUnERyJt_SY4oAWUWwOs_4LY9uCZ8oRVLOUgGPcQGyLrWe0el3rtqZ9ynZqD7ovV30bovWg9FB83VoKmI6JfHLNiJnH8Bbn53tg</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Bolton, J.</creator><creator>Gader, P.</creator><creator>Wilson, J.N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Discrete Choquet Integral as a Distance Metric</title><author>Bolton, J. ; Gader, P. ; Wilson, J.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bioinformatics</topic><topic>Choquet integral</topic><topic>distance measure</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>fuzzy measure</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Genomics</topic><topic>Image retrieval</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>metric</topic><topic>Military computing</topic><topic>nonlinear metric</topic><topic>Nonlinearity</topic><topic>Stochastic processes</topic><topic>Sufficient conditions</topic><topic>Terminology</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolton, J.</creatorcontrib><creatorcontrib>Gader, P.</creatorcontrib><creatorcontrib>Wilson, J.N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolton, J.</au><au>Gader, P.</au><au>Wilson, J.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Choquet Integral as a Distance Metric</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>16</volume><issue>4</issue><spage>1107</spage><epage>1110</epage><pages>1107-1110</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>The discrete Choquet integral is a nonlinear transformation that integrates a real function with respect to a fuzzy measure. We show that the discrete Choquet integral defines a metric if and only if the corresponding measure satisfies certain monotonicity constraints, thereby completely characterizing the class of measures that induce a metric with the Choquet integral.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2008.924347</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2008-08, Vol.16 (4), p.1107-1110
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_880648936
source IEEE Electronic Library (IEL) Journals
subjects Bioinformatics
Choquet integral
distance measure
Fuzzy
Fuzzy logic
fuzzy measure
Fuzzy set theory
Fuzzy systems
Genomics
Image retrieval
Integral equations
Integrals
metric
Military computing
nonlinear metric
Nonlinearity
Stochastic processes
Sufficient conditions
Terminology
Transformations
title Discrete Choquet Integral as a Distance Metric
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Choquet%20Integral%20as%20a%20Distance%20Metric&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Bolton,%20J.&rft.date=2008-08-01&rft.volume=16&rft.issue=4&rft.spage=1107&rft.epage=1110&rft.pages=1107-1110&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2008.924347&rft_dat=%3Cproquest_cross%3E34480485%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-c4943bc87c8fd02650afbc9beb2c20d9a92f0ef466c64950cf337e08a47a0b843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912308105&rft_id=info:pmid/&rft_ieee_id=4505367&rfr_iscdi=true