Loading…
Fiber-Directed Conjugated-Polymer Torsional Actuator: Nonlinear Elasticity Modeling and Experimental Validation
Existing conjugated-polymer actuators typically take the form of benders or linear extenders. In this paper, a conjugated-polymer-based torsional actuator is proposed by embedding helically wound fibers into a conjugated polymer tube during the polymer-deposition process. Upon actuation, the electro...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2011-08, Vol.16 (4), p.656-664 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Existing conjugated-polymer actuators typically take the form of benders or linear extenders. In this paper, a conjugated-polymer-based torsional actuator is proposed by embedding helically wound fibers into a conjugated polymer tube during the polymer-deposition process. Upon actuation, the electrolyte-soaked tube swells, and consequently, produces torsion and other associated deformations because of fiber-induced mechanical anisotropy of the composite material. A nonlinear elasticity-based model is presented to capture the torsion, elongation, and dilation of the tube. Experiments on tubular actuators with different thicknesses, fiber-winding angles, and diameters confirm the aforementioned deformation modes and validate the effectiveness of the proposed model. |
---|---|
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2010.2049366 |