Loading…

Room-temperature ferromagnetism of diamagnetically-doped ZnO aligned nanorods fabricated by vapor reaction

Large-scale monocrystalline oxide-diluted magnetic semiconductor (ODMS) Zn 1− x Bi x O nanorods arrays (NAs) were prepared within a large doping concentration range from 5% to 20% by a simple chemical vapor deposition. X-ray diffraction and high-resolution transmission electron microscopy reveal the...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2011-02, Vol.102 (2), p.367-371
Main Authors: Zhou, ShaoMin, Liu, LiSheng, Lou, ShiYun, Wang, YongQiang, Chen, XiLiang, Yuan, HongLei, Hao, YaoMing, Yuan, RuiJian, Li, Ning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-55d5604b27a9cf8d3ff78ba3be12c185a0ec6d49e0d7caa88a52d3e76e09b8463
cites cdi_FETCH-LOGICAL-c350t-55d5604b27a9cf8d3ff78ba3be12c185a0ec6d49e0d7caa88a52d3e76e09b8463
container_end_page 371
container_issue 2
container_start_page 367
container_title Applied physics. A, Materials science & processing
container_volume 102
creator Zhou, ShaoMin
Liu, LiSheng
Lou, ShiYun
Wang, YongQiang
Chen, XiLiang
Yuan, HongLei
Hao, YaoMing
Yuan, RuiJian
Li, Ning
description Large-scale monocrystalline oxide-diluted magnetic semiconductor (ODMS) Zn 1− x Bi x O nanorods arrays (NAs) were prepared within a large doping concentration range from 5% to 20% by a simple chemical vapor deposition. X-ray diffraction and high-resolution transmission electron microscopy reveal the monotonous expansion of the lattice constants with increasing Bi content, due to the effective Bi doping. In particular, room-temperature ferromagnetic (RTFM) behavior with Curie temperature over 363.7 K has been observed based on Bi-doped ZnO nanoarrays, whereas undoped ZnO NAs disappear. The RTFM origin is suggested, in which vacancies can be controlled to tune the FM. The as-formed RTFM NAs would have potential applications in many areas of advanced nanotechnology, such as new spintronic devices and magneto-optic components.
doi_str_mv 10.1007/s00339-010-6011-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880655791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880655791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-55d5604b27a9cf8d3ff78ba3be12c185a0ec6d49e0d7caa88a52d3e76e09b8463</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMoOK4-gLdcxFO00ul00kdZdBUWFkQvXkJ1Ull66E7apEeYtzfLDB7NpUjVVz_Ux9hbCR8kgPlYAZQaBUgQA0gpzDN2kL3qBAwKnrMDjL0RVo3DS_aq1iO013fdgR2_57yKndaNCu6nQjxSKXnFx0T7XFeeIw8zXv8el-UsQt4o8F_pgeMyt37gCVMuOVQecSqN2ltvOvM_uOXCC6Hf55xesxcRl0pvrvWG_fzy-cftV3H_cPft9tO98ErDLrQOeoB-6gyOPtqgYjR2QjWR7Ly0GoH8EPqRIBiPaC3qLigyA8E42X5QN-z9JXcr-feJ6u7WuXpaFkyUT9VZC4PWZpSNlBfSl1xroei2Mq9Yzk6Ce9LqLlpd0-qetDrTdt5d07E2HbFg8nP9t9gpq1u8alx34WobpUcq7phPJbXD_xP-F3tDies</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880655791</pqid></control><display><type>article</type><title>Room-temperature ferromagnetism of diamagnetically-doped ZnO aligned nanorods fabricated by vapor reaction</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhou, ShaoMin ; Liu, LiSheng ; Lou, ShiYun ; Wang, YongQiang ; Chen, XiLiang ; Yuan, HongLei ; Hao, YaoMing ; Yuan, RuiJian ; Li, Ning</creator><creatorcontrib>Zhou, ShaoMin ; Liu, LiSheng ; Lou, ShiYun ; Wang, YongQiang ; Chen, XiLiang ; Yuan, HongLei ; Hao, YaoMing ; Yuan, RuiJian ; Li, Ning</creatorcontrib><description>Large-scale monocrystalline oxide-diluted magnetic semiconductor (ODMS) Zn 1− x Bi x O nanorods arrays (NAs) were prepared within a large doping concentration range from 5% to 20% by a simple chemical vapor deposition. X-ray diffraction and high-resolution transmission electron microscopy reveal the monotonous expansion of the lattice constants with increasing Bi content, due to the effective Bi doping. In particular, room-temperature ferromagnetic (RTFM) behavior with Curie temperature over 363.7 K has been observed based on Bi-doped ZnO nanoarrays, whereas undoped ZnO NAs disappear. The RTFM origin is suggested, in which vacancies can be controlled to tune the FM. The as-formed RTFM NAs would have potential applications in many areas of advanced nanotechnology, such as new spintronic devices and magneto-optic components.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-010-6011-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Arrays ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Devices ; Doping ; Exact sciences and technology ; Ferromagnetism ; Machines ; Magnetic properties and materials ; Magnetic semiconductors ; Manufacturing ; Materials science ; Nanorods ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Studies of specific magnetic materials ; Surfaces and Interfaces ; Thin Films ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2011-02, Vol.102 (2), p.367-371</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-55d5604b27a9cf8d3ff78ba3be12c185a0ec6d49e0d7caa88a52d3e76e09b8463</citedby><cites>FETCH-LOGICAL-c350t-55d5604b27a9cf8d3ff78ba3be12c185a0ec6d49e0d7caa88a52d3e76e09b8463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23850653$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, ShaoMin</creatorcontrib><creatorcontrib>Liu, LiSheng</creatorcontrib><creatorcontrib>Lou, ShiYun</creatorcontrib><creatorcontrib>Wang, YongQiang</creatorcontrib><creatorcontrib>Chen, XiLiang</creatorcontrib><creatorcontrib>Yuan, HongLei</creatorcontrib><creatorcontrib>Hao, YaoMing</creatorcontrib><creatorcontrib>Yuan, RuiJian</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><title>Room-temperature ferromagnetism of diamagnetically-doped ZnO aligned nanorods fabricated by vapor reaction</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Large-scale monocrystalline oxide-diluted magnetic semiconductor (ODMS) Zn 1− x Bi x O nanorods arrays (NAs) were prepared within a large doping concentration range from 5% to 20% by a simple chemical vapor deposition. X-ray diffraction and high-resolution transmission electron microscopy reveal the monotonous expansion of the lattice constants with increasing Bi content, due to the effective Bi doping. In particular, room-temperature ferromagnetic (RTFM) behavior with Curie temperature over 363.7 K has been observed based on Bi-doped ZnO nanoarrays, whereas undoped ZnO NAs disappear. The RTFM origin is suggested, in which vacancies can be controlled to tune the FM. The as-formed RTFM NAs would have potential applications in many areas of advanced nanotechnology, such as new spintronic devices and magneto-optic components.</description><subject>Arrays</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Devices</subject><subject>Doping</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Machines</subject><subject>Magnetic properties and materials</subject><subject>Magnetic semiconductors</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Studies of specific magnetic materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMoOK4-gLdcxFO00ul00kdZdBUWFkQvXkJ1Ull66E7apEeYtzfLDB7NpUjVVz_Ux9hbCR8kgPlYAZQaBUgQA0gpzDN2kL3qBAwKnrMDjL0RVo3DS_aq1iO013fdgR2_57yKndaNCu6nQjxSKXnFx0T7XFeeIw8zXv8el-UsQt4o8F_pgeMyt37gCVMuOVQecSqN2ltvOvM_uOXCC6Hf55xesxcRl0pvrvWG_fzy-cftV3H_cPft9tO98ErDLrQOeoB-6gyOPtqgYjR2QjWR7Ly0GoH8EPqRIBiPaC3qLigyA8E42X5QN-z9JXcr-feJ6u7WuXpaFkyUT9VZC4PWZpSNlBfSl1xroei2Mq9Yzk6Ce9LqLlpd0-qetDrTdt5d07E2HbFg8nP9t9gpq1u8alx34WobpUcq7phPJbXD_xP-F3tDies</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Zhou, ShaoMin</creator><creator>Liu, LiSheng</creator><creator>Lou, ShiYun</creator><creator>Wang, YongQiang</creator><creator>Chen, XiLiang</creator><creator>Yuan, HongLei</creator><creator>Hao, YaoMing</creator><creator>Yuan, RuiJian</creator><creator>Li, Ning</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Room-temperature ferromagnetism of diamagnetically-doped ZnO aligned nanorods fabricated by vapor reaction</title><author>Zhou, ShaoMin ; Liu, LiSheng ; Lou, ShiYun ; Wang, YongQiang ; Chen, XiLiang ; Yuan, HongLei ; Hao, YaoMing ; Yuan, RuiJian ; Li, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-55d5604b27a9cf8d3ff78ba3be12c185a0ec6d49e0d7caa88a52d3e76e09b8463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arrays</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Devices</topic><topic>Doping</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Machines</topic><topic>Magnetic properties and materials</topic><topic>Magnetic semiconductors</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Studies of specific magnetic materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, ShaoMin</creatorcontrib><creatorcontrib>Liu, LiSheng</creatorcontrib><creatorcontrib>Lou, ShiYun</creatorcontrib><creatorcontrib>Wang, YongQiang</creatorcontrib><creatorcontrib>Chen, XiLiang</creatorcontrib><creatorcontrib>Yuan, HongLei</creatorcontrib><creatorcontrib>Hao, YaoMing</creatorcontrib><creatorcontrib>Yuan, RuiJian</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, ShaoMin</au><au>Liu, LiSheng</au><au>Lou, ShiYun</au><au>Wang, YongQiang</au><au>Chen, XiLiang</au><au>Yuan, HongLei</au><au>Hao, YaoMing</au><au>Yuan, RuiJian</au><au>Li, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature ferromagnetism of diamagnetically-doped ZnO aligned nanorods fabricated by vapor reaction</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>102</volume><issue>2</issue><spage>367</spage><epage>371</epage><pages>367-371</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Large-scale monocrystalline oxide-diluted magnetic semiconductor (ODMS) Zn 1− x Bi x O nanorods arrays (NAs) were prepared within a large doping concentration range from 5% to 20% by a simple chemical vapor deposition. X-ray diffraction and high-resolution transmission electron microscopy reveal the monotonous expansion of the lattice constants with increasing Bi content, due to the effective Bi doping. In particular, room-temperature ferromagnetic (RTFM) behavior with Curie temperature over 363.7 K has been observed based on Bi-doped ZnO nanoarrays, whereas undoped ZnO NAs disappear. The RTFM origin is suggested, in which vacancies can be controlled to tune the FM. The as-formed RTFM NAs would have potential applications in many areas of advanced nanotechnology, such as new spintronic devices and magneto-optic components.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-010-6011-7</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2011-02, Vol.102 (2), p.367-371
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_880655791
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Arrays
Characterization and Evaluation of Materials
Condensed Matter Physics
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Devices
Doping
Exact sciences and technology
Ferromagnetism
Machines
Magnetic properties and materials
Magnetic semiconductors
Manufacturing
Materials science
Nanorods
Nanostructure
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Studies of specific magnetic materials
Surfaces and Interfaces
Thin Films
Zinc oxide
title Room-temperature ferromagnetism of diamagnetically-doped ZnO aligned nanorods fabricated by vapor reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20ferromagnetism%20of%20diamagnetically-doped%20ZnO%20aligned%20nanorods%20fabricated%20by%20vapor%20reaction&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Zhou,%20ShaoMin&rft.date=2011-02-01&rft.volume=102&rft.issue=2&rft.spage=367&rft.epage=371&rft.pages=367-371&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-010-6011-7&rft_dat=%3Cproquest_cross%3E880655791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-55d5604b27a9cf8d3ff78ba3be12c185a0ec6d49e0d7caa88a52d3e76e09b8463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880655791&rft_id=info:pmid/&rfr_iscdi=true