Loading…
Block Krylov subspace methods for the computation of structural response to turbulent wind
In this paper the numerical computation of the dynamic response to turbulent wind excitations of slender structures is addressed. A numerical procedure capable to effectively estimate the three-dimensional structural behavior is proposed, based on a direct frequency domain approach. A probabilistic...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2011-06, Vol.200 (23), p.2067-2082 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-98910fc6a728a24e1e4a662033fb9d3bb17a7e02a84a7f52da255c8cdd9d75e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-98910fc6a728a24e1e4a662033fb9d3bb17a7e02a84a7f52da255c8cdd9d75e63 |
container_end_page | 2082 |
container_issue | 23 |
container_start_page | 2067 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 200 |
creator | Barbella, G. Perotti, F. Simoncini, V. |
description | In this paper the numerical computation of the dynamic response to turbulent wind excitations of slender structures is addressed. A numerical procedure capable to effectively estimate the three-dimensional structural behavior is proposed, based on a direct frequency domain approach. A probabilistic description of the wind velocity field, accounting for the correlation between the turbulence components, is combined to a linearized fluid–structure interaction model, under the quasi-steady hypothesis. We propose robust implementations of multiple right-hand side and multiple shift Krylov subspace methods with deflation of basis vectors, which allow us to efficiently analyze the dynamic response for a wide range of frequency values and wind time histories. Numerical experiments are reported with data stemming from real structure modeling. |
doi_str_mv | 10.1016/j.cma.2011.02.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880656453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782511000958</els_id><sourcerecordid>880656453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-98910fc6a728a24e1e4a662033fb9d3bb17a7e02a84a7f52da255c8cdd9d75e63</originalsourceid><addsrcrecordid>eNp9kM1u1TAQRi0EUi-FB-jOG8QqwXbi2BErqPipWokN3bCxJvZE9SWJg8dp1bcn1a1YMpuRRueb0RzGLqSopZDdh2PtZ6iVkLIWqhbSvGAHaU1fKdnYl-wgRKsrY5U-Y6-JjmIvK9WB_fo8Jf-bX-fHKd1z2gZawSOfsdylQHxMmZc75D7N61agxLTwNHIqefNlyzDxjLSmhZCXxPfJsE24FP4Ql_CGvRphInz73M_Z7dcvPy-_Vzc_vl1dfrqpfKP7UvW2l2L0HRhlQbUosYWuU6JpxqEPzTBIAwaFAtuCGbUKoLT21ofQB6Oxa87Z-9PeNac_G1JxcySP0wQLpo2ctaLTXaubnZQn0udElHF0a44z5EcnhXvS6I5u1-ieNDqh3K5xz7x73g7kYRozLD7Sv6BqpZGy7Xfu44nD_dX7iNmRj7h4DDGjLy6k-J8rfwE5A4kD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880656453</pqid></control><display><type>article</type><title>Block Krylov subspace methods for the computation of structural response to turbulent wind</title><source>ScienceDirect Freedom Collection</source><creator>Barbella, G. ; Perotti, F. ; Simoncini, V.</creator><creatorcontrib>Barbella, G. ; Perotti, F. ; Simoncini, V.</creatorcontrib><description>In this paper the numerical computation of the dynamic response to turbulent wind excitations of slender structures is addressed. A numerical procedure capable to effectively estimate the three-dimensional structural behavior is proposed, based on a direct frequency domain approach. A probabilistic description of the wind velocity field, accounting for the correlation between the turbulence components, is combined to a linearized fluid–structure interaction model, under the quasi-steady hypothesis. We propose robust implementations of multiple right-hand side and multiple shift Krylov subspace methods with deflation of basis vectors, which allow us to efficiently analyze the dynamic response for a wide range of frequency values and wind time histories. Numerical experiments are reported with data stemming from real structure modeling.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2011.02.017</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Block methods ; Deflation techniques ; Dynamic response ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid-structure interaction ; Frequency domain analysis ; Frequency domains ; Fundamental areas of phenomenology (including applications) ; Iterative nonsymmetric solvers ; Mathematical models ; Meteorology ; Physics ; Solid mechanics ; Stemming ; Structural and continuum mechanics ; Subspace methods ; Turbulent flow ; Turbulent wind ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Winds and their effects</subject><ispartof>Computer methods in applied mechanics and engineering, 2011-06, Vol.200 (23), p.2067-2082</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-98910fc6a728a24e1e4a662033fb9d3bb17a7e02a84a7f52da255c8cdd9d75e63</citedby><cites>FETCH-LOGICAL-c359t-98910fc6a728a24e1e4a662033fb9d3bb17a7e02a84a7f52da255c8cdd9d75e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24171149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbella, G.</creatorcontrib><creatorcontrib>Perotti, F.</creatorcontrib><creatorcontrib>Simoncini, V.</creatorcontrib><title>Block Krylov subspace methods for the computation of structural response to turbulent wind</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper the numerical computation of the dynamic response to turbulent wind excitations of slender structures is addressed. A numerical procedure capable to effectively estimate the three-dimensional structural behavior is proposed, based on a direct frequency domain approach. A probabilistic description of the wind velocity field, accounting for the correlation between the turbulence components, is combined to a linearized fluid–structure interaction model, under the quasi-steady hypothesis. We propose robust implementations of multiple right-hand side and multiple shift Krylov subspace methods with deflation of basis vectors, which allow us to efficiently analyze the dynamic response for a wide range of frequency values and wind time histories. Numerical experiments are reported with data stemming from real structure modeling.</description><subject>Block methods</subject><subject>Deflation techniques</subject><subject>Dynamic response</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid-structure interaction</subject><subject>Frequency domain analysis</subject><subject>Frequency domains</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Iterative nonsymmetric solvers</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Stemming</subject><subject>Structural and continuum mechanics</subject><subject>Subspace methods</subject><subject>Turbulent flow</subject><subject>Turbulent wind</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Winds and their effects</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1TAQRi0EUi-FB-jOG8QqwXbi2BErqPipWokN3bCxJvZE9SWJg8dp1bcn1a1YMpuRRueb0RzGLqSopZDdh2PtZ6iVkLIWqhbSvGAHaU1fKdnYl-wgRKsrY5U-Y6-JjmIvK9WB_fo8Jf-bX-fHKd1z2gZawSOfsdylQHxMmZc75D7N61agxLTwNHIqefNlyzDxjLSmhZCXxPfJsE24FP4Ql_CGvRphInz73M_Z7dcvPy-_Vzc_vl1dfrqpfKP7UvW2l2L0HRhlQbUosYWuU6JpxqEPzTBIAwaFAtuCGbUKoLT21ofQB6Oxa87Z-9PeNac_G1JxcySP0wQLpo2ctaLTXaubnZQn0udElHF0a44z5EcnhXvS6I5u1-ieNDqh3K5xz7x73g7kYRozLD7Sv6BqpZGy7Xfu44nD_dX7iNmRj7h4DDGjLy6k-J8rfwE5A4kD</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Barbella, G.</creator><creator>Perotti, F.</creator><creator>Simoncini, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110601</creationdate><title>Block Krylov subspace methods for the computation of structural response to turbulent wind</title><author>Barbella, G. ; Perotti, F. ; Simoncini, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-98910fc6a728a24e1e4a662033fb9d3bb17a7e02a84a7f52da255c8cdd9d75e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Block methods</topic><topic>Deflation techniques</topic><topic>Dynamic response</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid-structure interaction</topic><topic>Frequency domain analysis</topic><topic>Frequency domains</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Iterative nonsymmetric solvers</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Stemming</topic><topic>Structural and continuum mechanics</topic><topic>Subspace methods</topic><topic>Turbulent flow</topic><topic>Turbulent wind</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Winds and their effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbella, G.</creatorcontrib><creatorcontrib>Perotti, F.</creatorcontrib><creatorcontrib>Simoncini, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbella, G.</au><au>Perotti, F.</au><au>Simoncini, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block Krylov subspace methods for the computation of structural response to turbulent wind</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>200</volume><issue>23</issue><spage>2067</spage><epage>2082</epage><pages>2067-2082</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper the numerical computation of the dynamic response to turbulent wind excitations of slender structures is addressed. A numerical procedure capable to effectively estimate the three-dimensional structural behavior is proposed, based on a direct frequency domain approach. A probabilistic description of the wind velocity field, accounting for the correlation between the turbulence components, is combined to a linearized fluid–structure interaction model, under the quasi-steady hypothesis. We propose robust implementations of multiple right-hand side and multiple shift Krylov subspace methods with deflation of basis vectors, which allow us to efficiently analyze the dynamic response for a wide range of frequency values and wind time histories. Numerical experiments are reported with data stemming from real structure modeling.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2011.02.017</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2011-06, Vol.200 (23), p.2067-2082 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_880656453 |
source | ScienceDirect Freedom Collection |
subjects | Block methods Deflation techniques Dynamic response Earth, ocean, space Exact sciences and technology External geophysics Fluid-structure interaction Frequency domain analysis Frequency domains Fundamental areas of phenomenology (including applications) Iterative nonsymmetric solvers Mathematical models Meteorology Physics Solid mechanics Stemming Structural and continuum mechanics Subspace methods Turbulent flow Turbulent wind Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Winds and their effects |
title | Block Krylov subspace methods for the computation of structural response to turbulent wind |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block%20Krylov%20subspace%20methods%20for%20the%20computation%20of%20structural%20response%20to%20turbulent%20wind&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Barbella,%20G.&rft.date=2011-06-01&rft.volume=200&rft.issue=23&rft.spage=2067&rft.epage=2082&rft.pages=2067-2082&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2011.02.017&rft_dat=%3Cproquest_cross%3E880656453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-98910fc6a728a24e1e4a662033fb9d3bb17a7e02a84a7f52da255c8cdd9d75e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880656453&rft_id=info:pmid/&rfr_iscdi=true |