Loading…

Code Flexibility of 2-D Time-Spreading Wavelength-Hopping In OCDMA Systems

The potential performance and successful experimental demonstrations of two-dimensional time-spreading wavelength-hopping (TW) optical code-division multiple access systems have motivated a large volume of research into the development of new TW codes. The choice of the code is crucial in network de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2007-09, Vol.13 (5), p.1378-1385
Main Authors: Bazan, T.M., Harle, D., Andonovic, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The potential performance and successful experimental demonstrations of two-dimensional time-spreading wavelength-hopping (TW) optical code-division multiple access systems have motivated a large volume of research into the development of new TW codes. The choice of the code is crucial in network design since the code not only affects the overall system performance but also sets limits on the physical implementation of the encoding-decoding process. In this paper, ldquoflexibilityrdquo of TW codes is investigated, providing clarity on the tradeoff between key code factors, specifically the number of available wavelengths and time chips. Network performance is evaluated by taking into consideration multiple access interference and beat noise at both the physical and link layers. Furthermore, a general formula describing the impact of the extinction ratio (ER) on the bit-error probability is explored. The results indicate the importance of code flexibility and ER in system performance optimization.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2007.905506