Loading…
Neural-Network Application for Mechanical Variables Estimation of a Two-Mass Drive System
This paper deals with the application of neural networks (NNs) to the mechanical state estimation of the drive system with elastic joint. The torsional vibrations of the two-mass system are damped using the control structure with additional feedbacks from the torsional torque and the load-side speed...
Saved in:
Published in: | IEEE industrial electronics magazine 2007-06, Vol.54 (3), p.1352-1364 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the application of neural networks (NNs) to the mechanical state estimation of the drive system with elastic joint. The torsional vibrations of the two-mass system are damped using the control structure with additional feedbacks from the torsional torque and the load-side speed. These feedbacks signals are obtained using NN estimators. The learning procedure of the NNs is described, and the influence of the input vector size to the accuracy of the state-variable estimation is investigated. The neural estimators of the torsional torque and the load machine speed are tested with open-loop and closed-loop control structures. The simulation results are confirmed by laboratory experiments |
---|---|
ISSN: | 0278-0046 1932-4529 1557-9948 |
DOI: | 10.1109/TIE.2007.892637 |