Loading…

Neural-Network Application for Mechanical Variables Estimation of a Two-Mass Drive System

This paper deals with the application of neural networks (NNs) to the mechanical state estimation of the drive system with elastic joint. The torsional vibrations of the two-mass system are damped using the control structure with additional feedbacks from the torsional torque and the load-side speed...

Full description

Saved in:
Bibliographic Details
Published in:IEEE industrial electronics magazine 2007-06, Vol.54 (3), p.1352-1364
Main Authors: Orlowska-Kowalska, T., Szabat, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-f8e35c46e6db3d5d37c2088ea5ce3b7bbd290bdd3362f8177360e7de228b10f43
cites cdi_FETCH-LOGICAL-c449t-f8e35c46e6db3d5d37c2088ea5ce3b7bbd290bdd3362f8177360e7de228b10f43
container_end_page 1364
container_issue 3
container_start_page 1352
container_title IEEE industrial electronics magazine
container_volume 54
creator Orlowska-Kowalska, T.
Szabat, K.
description This paper deals with the application of neural networks (NNs) to the mechanical state estimation of the drive system with elastic joint. The torsional vibrations of the two-mass system are damped using the control structure with additional feedbacks from the torsional torque and the load-side speed. These feedbacks signals are obtained using NN estimators. The learning procedure of the NNs is described, and the influence of the input vector size to the accuracy of the state-variable estimation is investigated. The neural estimators of the torsional torque and the load machine speed are tested with open-loop and closed-loop control structures. The simulation results are confirmed by laboratory experiments
doi_str_mv 10.1109/TIE.2007.892637
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880658531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4148045</ieee_id><sourcerecordid>903630819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-f8e35c46e6db3d5d37c2088ea5ce3b7bbd290bdd3362f8177360e7de228b10f43</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgUQpzAwsFgNMKdfxMyOCApV4DBQkJstJbkQgrYudUvXfkyqIgQGmK1nfsXx9CDlkMGIMsrPpZDxKAfTIZKnieosMmJQ6yTJhtskAUm0SAKF2yV6MbwBMSCYH5OUel8E1yT22Kx_e6fli0dSFa2s_p5UP9A6LVzfvThr67ELt8gYjHce2nvXGV9TR6condy5GehnqT6SP69jibJ_sVK6JePA9h-Tpajy9uEluH64nF-e3SSFE1iaVQS4LoVCVOS9lyXWRgjHoZIE813lephnkZcm5SivDtOYKUJeYpiZnUAk-JKf9vYvgP5YYWzurY4FN4-bol9FmwBUHw7J_pTGgpJGcdfLkT8mFEKA1dPD4F3zzyzDv9rVGdcRItXnhWY-K4GMMWNlF6P4vrC0Du-nOdt3ZTXe2765LHPWJGhF_tGDCgJD8C4f8lAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864078564</pqid></control><display><type>article</type><title>Neural-Network Application for Mechanical Variables Estimation of a Two-Mass Drive System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Orlowska-Kowalska, T. ; Szabat, K.</creator><creatorcontrib>Orlowska-Kowalska, T. ; Szabat, K.</creatorcontrib><description>This paper deals with the application of neural networks (NNs) to the mechanical state estimation of the drive system with elastic joint. The torsional vibrations of the two-mass system are damped using the control structure with additional feedbacks from the torsional torque and the load-side speed. These feedbacks signals are obtained using NN estimators. The learning procedure of the NNs is described, and the influence of the input vector size to the accuracy of the state-variable estimation is investigated. The neural estimators of the torsional torque and the load machine speed are tested with open-loop and closed-loop control structures. The simulation results are confirmed by laboratory experiments</description><identifier>ISSN: 0278-0046</identifier><identifier>ISSN: 1932-4529</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2007.892637</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Control systems ; Control theory ; Estimators ; Feedback ; Laboratories ; Mechanical variables control ; Neural networks ; Neural networks (NNs) ; Neurofeedback ; Open loop systems ; State estimation ; state variable estimation ; Testing ; Torque ; Torque control ; torsional vibration ; two-mass system ; Vibration control</subject><ispartof>IEEE industrial electronics magazine, 2007-06, Vol.54 (3), p.1352-1364</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-f8e35c46e6db3d5d37c2088ea5ce3b7bbd290bdd3362f8177360e7de228b10f43</citedby><cites>FETCH-LOGICAL-c449t-f8e35c46e6db3d5d37c2088ea5ce3b7bbd290bdd3362f8177360e7de228b10f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4148045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Orlowska-Kowalska, T.</creatorcontrib><creatorcontrib>Szabat, K.</creatorcontrib><title>Neural-Network Application for Mechanical Variables Estimation of a Two-Mass Drive System</title><title>IEEE industrial electronics magazine</title><addtitle>TIE</addtitle><description>This paper deals with the application of neural networks (NNs) to the mechanical state estimation of the drive system with elastic joint. The torsional vibrations of the two-mass system are damped using the control structure with additional feedbacks from the torsional torque and the load-side speed. These feedbacks signals are obtained using NN estimators. The learning procedure of the NNs is described, and the influence of the input vector size to the accuracy of the state-variable estimation is investigated. The neural estimators of the torsional torque and the load machine speed are tested with open-loop and closed-loop control structures. The simulation results are confirmed by laboratory experiments</description><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Estimators</subject><subject>Feedback</subject><subject>Laboratories</subject><subject>Mechanical variables control</subject><subject>Neural networks</subject><subject>Neural networks (NNs)</subject><subject>Neurofeedback</subject><subject>Open loop systems</subject><subject>State estimation</subject><subject>state variable estimation</subject><subject>Testing</subject><subject>Torque</subject><subject>Torque control</subject><subject>torsional vibration</subject><subject>two-mass system</subject><subject>Vibration control</subject><issn>0278-0046</issn><issn>1932-4529</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0TtPwzAUBWALgUQpzAwsFgNMKdfxMyOCApV4DBQkJstJbkQgrYudUvXfkyqIgQGmK1nfsXx9CDlkMGIMsrPpZDxKAfTIZKnieosMmJQ6yTJhtskAUm0SAKF2yV6MbwBMSCYH5OUel8E1yT22Kx_e6fli0dSFa2s_p5UP9A6LVzfvThr67ELt8gYjHce2nvXGV9TR6condy5GehnqT6SP69jibJ_sVK6JePA9h-Tpajy9uEluH64nF-e3SSFE1iaVQS4LoVCVOS9lyXWRgjHoZIE813lephnkZcm5SivDtOYKUJeYpiZnUAk-JKf9vYvgP5YYWzurY4FN4-bol9FmwBUHw7J_pTGgpJGcdfLkT8mFEKA1dPD4F3zzyzDv9rVGdcRItXnhWY-K4GMMWNlF6P4vrC0Du-nOdt3ZTXe2765LHPWJGhF_tGDCgJD8C4f8lAU</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Orlowska-Kowalska, T.</creator><creator>Szabat, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070601</creationdate><title>Neural-Network Application for Mechanical Variables Estimation of a Two-Mass Drive System</title><author>Orlowska-Kowalska, T. ; Szabat, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-f8e35c46e6db3d5d37c2088ea5ce3b7bbd290bdd3362f8177360e7de228b10f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Estimators</topic><topic>Feedback</topic><topic>Laboratories</topic><topic>Mechanical variables control</topic><topic>Neural networks</topic><topic>Neural networks (NNs)</topic><topic>Neurofeedback</topic><topic>Open loop systems</topic><topic>State estimation</topic><topic>state variable estimation</topic><topic>Testing</topic><topic>Torque</topic><topic>Torque control</topic><topic>torsional vibration</topic><topic>two-mass system</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlowska-Kowalska, T.</creatorcontrib><creatorcontrib>Szabat, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE industrial electronics magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlowska-Kowalska, T.</au><au>Szabat, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Network Application for Mechanical Variables Estimation of a Two-Mass Drive System</atitle><jtitle>IEEE industrial electronics magazine</jtitle><stitle>TIE</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>54</volume><issue>3</issue><spage>1352</spage><epage>1364</epage><pages>1352-1364</pages><issn>0278-0046</issn><issn>1932-4529</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper deals with the application of neural networks (NNs) to the mechanical state estimation of the drive system with elastic joint. The torsional vibrations of the two-mass system are damped using the control structure with additional feedbacks from the torsional torque and the load-side speed. These feedbacks signals are obtained using NN estimators. The learning procedure of the NNs is described, and the influence of the input vector size to the accuracy of the state-variable estimation is investigated. The neural estimators of the torsional torque and the load machine speed are tested with open-loop and closed-loop control structures. The simulation results are confirmed by laboratory experiments</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2007.892637</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE industrial electronics magazine, 2007-06, Vol.54 (3), p.1352-1364
issn 0278-0046
1932-4529
1557-9948
language eng
recordid cdi_proquest_miscellaneous_880658531
source IEEE Electronic Library (IEL) Journals
subjects Computer simulation
Control systems
Control theory
Estimators
Feedback
Laboratories
Mechanical variables control
Neural networks
Neural networks (NNs)
Neurofeedback
Open loop systems
State estimation
state variable estimation
Testing
Torque
Torque control
torsional vibration
two-mass system
Vibration control
title Neural-Network Application for Mechanical Variables Estimation of a Two-Mass Drive System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Network%20Application%20for%20Mechanical%20Variables%20Estimation%20of%20a%20Two-Mass%20Drive%20System&rft.jtitle=IEEE%20industrial%20electronics%20magazine&rft.au=Orlowska-Kowalska,%20T.&rft.date=2007-06-01&rft.volume=54&rft.issue=3&rft.spage=1352&rft.epage=1364&rft.pages=1352-1364&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2007.892637&rft_dat=%3Cproquest_cross%3E903630819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-f8e35c46e6db3d5d37c2088ea5ce3b7bbd290bdd3362f8177360e7de228b10f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864078564&rft_id=info:pmid/&rft_ieee_id=4148045&rfr_iscdi=true