Loading…

Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality

In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS eff), chemical oxygen demand (COD eff), and pH eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. T...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling 2011-08, Vol.35 (8), p.3674-3684
Main Authors: Pai, T.Y., Yang, P.Y., Wang, S.C., Lo, M.H., Chiang, C.F., Kuo, J.L., Chu, H.H., Su, H.C., Yu, L.F., Hu, H.C., Chang, Y.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333
cites cdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333
container_end_page 3684
container_issue 8
container_start_page 3674
container_title Applied mathematical modelling
container_volume 35
creator Pai, T.Y.
Yang, P.Y.
Wang, S.C.
Lo, M.H.
Chiang, C.F.
Kuo, J.L.
Chu, H.H.
Su, H.C.
Yu, L.F.
Hu, H.C.
Chang, Y.H.
description In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS eff), chemical oxygen demand (COD eff), and pH eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS eff, COD eff, and pH eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS eff, COD eff, and pH eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS eff, COD eff, and pH eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality.
doi_str_mv 10.1016/j.apm.2011.01.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880660829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11000321</els_id><sourcerecordid>880660829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhWehYK3-AHfZiKsZb-aZwZUUX1DQhYK7kMncaOq8mmRa2l9vhhaXwiXh5nz3hHuC4IpCRIHmt6tIDG0UA6URTFWeBDNIoAhLSD_PgnNrVwCQ-W4WbN4M1lo63X0RVKoZsXNEmb4l7hvJVliHW-HQEGdQuHZSh0b4s1dEd_VondGiIYMwP6QSFmvSd0SN-_2OdOi2vX8WXe3Ro_V6FI12u4vgVInG4uXxngcfjw_vi-dw-fr0srhfhjKF2IVJTYs4kYAAirI6AQaClTIGxbCsoEoVY0XC4jLPKpV5mRaeTHPlhVQmSTIPbg6-g-nXI1rHW20lNn4F7EfLGYM8B2_gSXogpemtNaj4YHQrzI5T4FOsfMV9rHyKlcNU08z10V1YKRplRCe1_RuMU5plcZp77u7AoV91o9FwKzV20idvUDpe9_qfX34BP0yQzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880660829</pqid></control><display><type>article</type><title>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Pai, T.Y. ; Yang, P.Y. ; Wang, S.C. ; Lo, M.H. ; Chiang, C.F. ; Kuo, J.L. ; Chu, H.H. ; Su, H.C. ; Yu, L.F. ; Hu, H.C. ; Chang, Y.H.</creator><creatorcontrib>Pai, T.Y. ; Yang, P.Y. ; Wang, S.C. ; Lo, M.H. ; Chiang, C.F. ; Kuo, J.L. ; Chu, H.H. ; Su, H.C. ; Yu, L.F. ; Hu, H.C. ; Chang, Y.H.</creatorcontrib><description>In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS eff), chemical oxygen demand (COD eff), and pH eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS eff, COD eff, and pH eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS eff, COD eff, and pH eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS eff, COD eff, and pH eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.01.019</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Adaptive neuro fuzzy inference system ; Applied sciences ; Artificial intelligence ; Artificial neural network ; Biological wastewater treatment plant ; Computer science; control theory; systems ; Connectionism. Neural networks ; Conventional activated sludge process ; Exact sciences and technology ; Industrial park ; Pollution ; Wastewaters ; Water treatment and pollution</subject><ispartof>Applied mathematical modelling, 2011-08, Vol.35 (8), p.3674-3684</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</citedby><cites>FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24155246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pai, T.Y.</creatorcontrib><creatorcontrib>Yang, P.Y.</creatorcontrib><creatorcontrib>Wang, S.C.</creatorcontrib><creatorcontrib>Lo, M.H.</creatorcontrib><creatorcontrib>Chiang, C.F.</creatorcontrib><creatorcontrib>Kuo, J.L.</creatorcontrib><creatorcontrib>Chu, H.H.</creatorcontrib><creatorcontrib>Su, H.C.</creatorcontrib><creatorcontrib>Yu, L.F.</creatorcontrib><creatorcontrib>Hu, H.C.</creatorcontrib><creatorcontrib>Chang, Y.H.</creatorcontrib><title>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</title><title>Applied mathematical modelling</title><description>In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS eff), chemical oxygen demand (COD eff), and pH eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS eff, COD eff, and pH eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS eff, COD eff, and pH eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS eff, COD eff, and pH eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality.</description><subject>Adaptive neuro fuzzy inference system</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural network</subject><subject>Biological wastewater treatment plant</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Conventional activated sludge process</subject><subject>Exact sciences and technology</subject><subject>Industrial park</subject><subject>Pollution</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhWehYK3-AHfZiKsZb-aZwZUUX1DQhYK7kMncaOq8mmRa2l9vhhaXwiXh5nz3hHuC4IpCRIHmt6tIDG0UA6URTFWeBDNIoAhLSD_PgnNrVwCQ-W4WbN4M1lo63X0RVKoZsXNEmb4l7hvJVliHW-HQEGdQuHZSh0b4s1dEd_VondGiIYMwP6QSFmvSd0SN-_2OdOi2vX8WXe3Ro_V6FI12u4vgVInG4uXxngcfjw_vi-dw-fr0srhfhjKF2IVJTYs4kYAAirI6AQaClTIGxbCsoEoVY0XC4jLPKpV5mRaeTHPlhVQmSTIPbg6-g-nXI1rHW20lNn4F7EfLGYM8B2_gSXogpemtNaj4YHQrzI5T4FOsfMV9rHyKlcNU08z10V1YKRplRCe1_RuMU5plcZp77u7AoV91o9FwKzV20idvUDpe9_qfX34BP0yQzQ</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Pai, T.Y.</creator><creator>Yang, P.Y.</creator><creator>Wang, S.C.</creator><creator>Lo, M.H.</creator><creator>Chiang, C.F.</creator><creator>Kuo, J.L.</creator><creator>Chu, H.H.</creator><creator>Su, H.C.</creator><creator>Yu, L.F.</creator><creator>Hu, H.C.</creator><creator>Chang, Y.H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110801</creationdate><title>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</title><author>Pai, T.Y. ; Yang, P.Y. ; Wang, S.C. ; Lo, M.H. ; Chiang, C.F. ; Kuo, J.L. ; Chu, H.H. ; Su, H.C. ; Yu, L.F. ; Hu, H.C. ; Chang, Y.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive neuro fuzzy inference system</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural network</topic><topic>Biological wastewater treatment plant</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Conventional activated sludge process</topic><topic>Exact sciences and technology</topic><topic>Industrial park</topic><topic>Pollution</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pai, T.Y.</creatorcontrib><creatorcontrib>Yang, P.Y.</creatorcontrib><creatorcontrib>Wang, S.C.</creatorcontrib><creatorcontrib>Lo, M.H.</creatorcontrib><creatorcontrib>Chiang, C.F.</creatorcontrib><creatorcontrib>Kuo, J.L.</creatorcontrib><creatorcontrib>Chu, H.H.</creatorcontrib><creatorcontrib>Su, H.C.</creatorcontrib><creatorcontrib>Yu, L.F.</creatorcontrib><creatorcontrib>Hu, H.C.</creatorcontrib><creatorcontrib>Chang, Y.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, T.Y.</au><au>Yang, P.Y.</au><au>Wang, S.C.</au><au>Lo, M.H.</au><au>Chiang, C.F.</au><au>Kuo, J.L.</au><au>Chu, H.H.</au><au>Su, H.C.</au><au>Yu, L.F.</au><au>Hu, H.C.</au><au>Chang, Y.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</atitle><jtitle>Applied mathematical modelling</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>35</volume><issue>8</issue><spage>3674</spage><epage>3684</epage><pages>3674-3684</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS eff), chemical oxygen demand (COD eff), and pH eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS eff, COD eff, and pH eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS eff, COD eff, and pH eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS eff, COD eff, and pH eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.01.019</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2011-08, Vol.35 (8), p.3674-3684
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_880660829
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Adaptive neuro fuzzy inference system
Applied sciences
Artificial intelligence
Artificial neural network
Biological wastewater treatment plant
Computer science
control theory
systems
Connectionism. Neural networks
Conventional activated sludge process
Exact sciences and technology
Industrial park
Pollution
Wastewaters
Water treatment and pollution
title Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20effluent%20from%20the%20wastewater%20treatment%20plant%20of%20industrial%20park%20based%20on%20fuzzy%20network%20and%20influent%20quality&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Pai,%20T.Y.&rft.date=2011-08-01&rft.volume=35&rft.issue=8&rft.spage=3674&rft.epage=3684&rft.pages=3674-3684&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2011.01.019&rft_dat=%3Cproquest_cross%3E880660829%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880660829&rft_id=info:pmid/&rfr_iscdi=true