Loading…
Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality
In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS eff), chemical oxygen demand (COD eff), and pH eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. T...
Saved in:
Published in: | Applied mathematical modelling 2011-08, Vol.35 (8), p.3674-3684 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333 |
container_end_page | 3684 |
container_issue | 8 |
container_start_page | 3674 |
container_title | Applied mathematical modelling |
container_volume | 35 |
creator | Pai, T.Y. Yang, P.Y. Wang, S.C. Lo, M.H. Chiang, C.F. Kuo, J.L. Chu, H.H. Su, H.C. Yu, L.F. Hu, H.C. Chang, Y.H. |
description | In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS
eff), chemical oxygen demand (COD
eff), and pH
eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS
eff, COD
eff, and pH
eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS
eff, COD
eff, and pH
eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS
eff, COD
eff, and pH
eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality. |
doi_str_mv | 10.1016/j.apm.2011.01.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880660829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11000321</els_id><sourcerecordid>880660829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhWehYK3-AHfZiKsZb-aZwZUUX1DQhYK7kMncaOq8mmRa2l9vhhaXwiXh5nz3hHuC4IpCRIHmt6tIDG0UA6URTFWeBDNIoAhLSD_PgnNrVwCQ-W4WbN4M1lo63X0RVKoZsXNEmb4l7hvJVliHW-HQEGdQuHZSh0b4s1dEd_VondGiIYMwP6QSFmvSd0SN-_2OdOi2vX8WXe3Ro_V6FI12u4vgVInG4uXxngcfjw_vi-dw-fr0srhfhjKF2IVJTYs4kYAAirI6AQaClTIGxbCsoEoVY0XC4jLPKpV5mRaeTHPlhVQmSTIPbg6-g-nXI1rHW20lNn4F7EfLGYM8B2_gSXogpemtNaj4YHQrzI5T4FOsfMV9rHyKlcNU08z10V1YKRplRCe1_RuMU5plcZp77u7AoV91o9FwKzV20idvUDpe9_qfX34BP0yQzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880660829</pqid></control><display><type>article</type><title>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Pai, T.Y. ; Yang, P.Y. ; Wang, S.C. ; Lo, M.H. ; Chiang, C.F. ; Kuo, J.L. ; Chu, H.H. ; Su, H.C. ; Yu, L.F. ; Hu, H.C. ; Chang, Y.H.</creator><creatorcontrib>Pai, T.Y. ; Yang, P.Y. ; Wang, S.C. ; Lo, M.H. ; Chiang, C.F. ; Kuo, J.L. ; Chu, H.H. ; Su, H.C. ; Yu, L.F. ; Hu, H.C. ; Chang, Y.H.</creatorcontrib><description>In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS
eff), chemical oxygen demand (COD
eff), and pH
eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS
eff, COD
eff, and pH
eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS
eff, COD
eff, and pH
eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS
eff, COD
eff, and pH
eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.01.019</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Adaptive neuro fuzzy inference system ; Applied sciences ; Artificial intelligence ; Artificial neural network ; Biological wastewater treatment plant ; Computer science; control theory; systems ; Connectionism. Neural networks ; Conventional activated sludge process ; Exact sciences and technology ; Industrial park ; Pollution ; Wastewaters ; Water treatment and pollution</subject><ispartof>Applied mathematical modelling, 2011-08, Vol.35 (8), p.3674-3684</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</citedby><cites>FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24155246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pai, T.Y.</creatorcontrib><creatorcontrib>Yang, P.Y.</creatorcontrib><creatorcontrib>Wang, S.C.</creatorcontrib><creatorcontrib>Lo, M.H.</creatorcontrib><creatorcontrib>Chiang, C.F.</creatorcontrib><creatorcontrib>Kuo, J.L.</creatorcontrib><creatorcontrib>Chu, H.H.</creatorcontrib><creatorcontrib>Su, H.C.</creatorcontrib><creatorcontrib>Yu, L.F.</creatorcontrib><creatorcontrib>Hu, H.C.</creatorcontrib><creatorcontrib>Chang, Y.H.</creatorcontrib><title>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</title><title>Applied mathematical modelling</title><description>In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS
eff), chemical oxygen demand (COD
eff), and pH
eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS
eff, COD
eff, and pH
eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS
eff, COD
eff, and pH
eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS
eff, COD
eff, and pH
eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality.</description><subject>Adaptive neuro fuzzy inference system</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural network</subject><subject>Biological wastewater treatment plant</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Conventional activated sludge process</subject><subject>Exact sciences and technology</subject><subject>Industrial park</subject><subject>Pollution</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhWehYK3-AHfZiKsZb-aZwZUUX1DQhYK7kMncaOq8mmRa2l9vhhaXwiXh5nz3hHuC4IpCRIHmt6tIDG0UA6URTFWeBDNIoAhLSD_PgnNrVwCQ-W4WbN4M1lo63X0RVKoZsXNEmb4l7hvJVliHW-HQEGdQuHZSh0b4s1dEd_VondGiIYMwP6QSFmvSd0SN-_2OdOi2vX8WXe3Ro_V6FI12u4vgVInG4uXxngcfjw_vi-dw-fr0srhfhjKF2IVJTYs4kYAAirI6AQaClTIGxbCsoEoVY0XC4jLPKpV5mRaeTHPlhVQmSTIPbg6-g-nXI1rHW20lNn4F7EfLGYM8B2_gSXogpemtNaj4YHQrzI5T4FOsfMV9rHyKlcNU08z10V1YKRplRCe1_RuMU5plcZp77u7AoV91o9FwKzV20idvUDpe9_qfX34BP0yQzQ</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Pai, T.Y.</creator><creator>Yang, P.Y.</creator><creator>Wang, S.C.</creator><creator>Lo, M.H.</creator><creator>Chiang, C.F.</creator><creator>Kuo, J.L.</creator><creator>Chu, H.H.</creator><creator>Su, H.C.</creator><creator>Yu, L.F.</creator><creator>Hu, H.C.</creator><creator>Chang, Y.H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110801</creationdate><title>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</title><author>Pai, T.Y. ; Yang, P.Y. ; Wang, S.C. ; Lo, M.H. ; Chiang, C.F. ; Kuo, J.L. ; Chu, H.H. ; Su, H.C. ; Yu, L.F. ; Hu, H.C. ; Chang, Y.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive neuro fuzzy inference system</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural network</topic><topic>Biological wastewater treatment plant</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Conventional activated sludge process</topic><topic>Exact sciences and technology</topic><topic>Industrial park</topic><topic>Pollution</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pai, T.Y.</creatorcontrib><creatorcontrib>Yang, P.Y.</creatorcontrib><creatorcontrib>Wang, S.C.</creatorcontrib><creatorcontrib>Lo, M.H.</creatorcontrib><creatorcontrib>Chiang, C.F.</creatorcontrib><creatorcontrib>Kuo, J.L.</creatorcontrib><creatorcontrib>Chu, H.H.</creatorcontrib><creatorcontrib>Su, H.C.</creatorcontrib><creatorcontrib>Yu, L.F.</creatorcontrib><creatorcontrib>Hu, H.C.</creatorcontrib><creatorcontrib>Chang, Y.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, T.Y.</au><au>Yang, P.Y.</au><au>Wang, S.C.</au><au>Lo, M.H.</au><au>Chiang, C.F.</au><au>Kuo, J.L.</au><au>Chu, H.H.</au><au>Su, H.C.</au><au>Yu, L.F.</au><au>Hu, H.C.</au><au>Chang, Y.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality</atitle><jtitle>Applied mathematical modelling</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>35</volume><issue>8</issue><spage>3674</spage><epage>3684</epage><pages>3674-3684</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>In this study, three types of adaptive neuro fuzzy inference system (ANFIS) were employed to predict effluent suspended solids (SS
eff), chemical oxygen demand (COD
eff), and pH
eff from a wastewater treatment plant in industrial park. For comparison, artificial neural network (ANN) was also used. The results indicated that ANFIS statistically outperformed ANN in terms of effluent prediction. The minimum mean absolute percentage errors of 2.67%, 2.80%, and 0.42% for SS
eff, COD
eff, and pH
eff could be achieved using ANFIS. The maximum values of correlation coefficient for SS
eff, COD
eff, and pH
eff were 0.96, 0.93, and 0.95, respectively. The minimum mean square errors of 0.19, 2.25, and 0.00, and the minimum root mean square errors of 0.43, 1.48, and 0.04 for SS
eff, COD
eff, and pH
eff could also be achieved. ANFIS’s architecture can overcome the limitations of traditional neural network. It also revealed that the influent indices could be applied to the prediction of effluent quality.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.01.019</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2011-08, Vol.35 (8), p.3674-3684 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_880660829 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Adaptive neuro fuzzy inference system Applied sciences Artificial intelligence Artificial neural network Biological wastewater treatment plant Computer science control theory systems Connectionism. Neural networks Conventional activated sludge process Exact sciences and technology Industrial park Pollution Wastewaters Water treatment and pollution |
title | Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20effluent%20from%20the%20wastewater%20treatment%20plant%20of%20industrial%20park%20based%20on%20fuzzy%20network%20and%20influent%20quality&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Pai,%20T.Y.&rft.date=2011-08-01&rft.volume=35&rft.issue=8&rft.spage=3674&rft.epage=3684&rft.pages=3674-3684&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2011.01.019&rft_dat=%3Cproquest_cross%3E880660829%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3d1723c0e00f18d3080a89c20f8e9b0b4f887382965bf53081700f46f4f84c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880660829&rft_id=info:pmid/&rfr_iscdi=true |