Loading…
Robust Adaptive Observer Design for Uncertain Systems With Bounded Disturbances
This paper presents a robust adaptive observer design methodology for a class of uncertain nonlinear systems in the presence of time-varying unknown parameters with absolutely integrable derivatives, and nonvanishing disturbances. Using the universal approximation property of radial basis function (...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2007-09, Vol.18 (5), p.1392-1403 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a robust adaptive observer design methodology for a class of uncertain nonlinear systems in the presence of time-varying unknown parameters with absolutely integrable derivatives, and nonvanishing disturbances. Using the universal approximation property of radial basis function (RBF) neural networks and the adaptive bounding technique, the developed observer achieves asymptotic convergence of state estimation error to zero, while ensuring boundedness of parameter errors. A comparative simulation study is presented by the end. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2007.895837 |