Loading…

SiGeC/Si Electrooptic Modulators

The addition of carbon to silicon-germanium alloys provides the ability to lattice match thick layers with high germanium composition to silicon substrates. Thick strain-free silicon-germanium-carbon (SiGeC) layers on silicon allow the design of optical waveguides that have large optical mode overla...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2007-03, Vol.25 (3), p.866-874
Main Authors: Schubert, M.F., Rana, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The addition of carbon to silicon-germanium alloys provides the ability to lattice match thick layers with high germanium composition to silicon substrates. Thick strain-free silicon-germanium-carbon (SiGeC) layers on silicon allow the design of optical waveguides that have large optical mode overlap with the waveguide core. In addition, SiGeC/Si heterostructures enable strong confinement of large electron and hole concentrations. The combination of tightly confined carriers and photons can be used to realize high-performance broadband electrooptic modulators based on carrier density-induced refractive index changes. We show that modulators with lengths around 30 mum and turn-on times below 0.2 ns are possible with optimized designs
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2006.890432