Loading…
A Merged Fuzzy Neural Network and Its Applications in Battery State-of-Charge Estimation
To solve learning problems with vast number of inputs, this paper proposes a novel learning structure merging a number of small fuzzy neural networks (FNNs) into a hierarchical learning structure called a merged-FNN. In this paper, the merged-FNN is proved to be a universal approximator. This comput...
Saved in:
Published in: | IEEE transactions on energy conversion 2007-09, Vol.22 (3), p.697-708 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To solve learning problems with vast number of inputs, this paper proposes a novel learning structure merging a number of small fuzzy neural networks (FNNs) into a hierarchical learning structure called a merged-FNN. In this paper, the merged-FNN is proved to be a universal approximator. This computing approach uses a fusion of FNNs using B-spline membership functions (BMFs) with a reduced-form genetic algorithm (RGA). RGA is employed to tune all free parameters of the merged-FNN, including both the control points of the BMFs and the weights of the small FNNs. The merged-FNN can approximate a continuous nonlinear function to any desired degree of accuracy. For a practical application, a battery state-of-charge (BSOC) estimator, which is a twelve input, one output system, in a lithium-ion battery string is proposed to verify the effectiveness of the merged-FNN. From experimental results, the learning ability of the newly proposed merged-FNN with RGA is superior to that of the traditional neural networks with back-propagation learning. |
---|---|
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2007.895457 |