Loading…

Invariant representative cocycles of cohomology generators using irregular graph pyramids

► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotati...

Full description

Saved in:
Bibliographic Details
Published in:Computer vision and image understanding 2011-07, Vol.115 (7), p.1011-1022
Main Authors: Gonzalez-Diaz, Rocio, Ion, Adrian, Iglesias-Ham, Mabel, Kropatsch, Walter G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3
cites cdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3
container_end_page 1022
container_issue 7
container_start_page 1011
container_title Computer vision and image understanding
container_volume 115
creator Gonzalez-Diaz, Rocio
Ion, Adrian
Iglesias-Ham, Mabel
Kropatsch, Walter G.
description ► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid. Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.
doi_str_mv 10.1016/j.cviu.2010.12.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880670509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314211000774</els_id><sourcerecordid>880670509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxYMoWKtfwFNunlJn0zTZBS9S_AcFLz3oaVkns-mWNBtnk0C-vY317Gkew_sN814U3QpYCBD5_X6Bg-sXKUyLdAGgzqKZAAVJulx9nE-6KJKlyNLL6CqEPYAQmRKz6POtGQw703QxU8sUqOlM5waK0eOINYXY26Pe-YOvfTXGFTXEpvMc4j64poodM1V9bTiu2LS7uB3ZHFwZrqMLa-pAN39zHm2fn7br12Tz_vK2ftwkuCzyLsFCqByzAlGkuZIrgUoClUiltGQzKxBSi0ZZAZipUlkrTSlzaU1GX0W5nEd3p7Mt---eQqcPLiDVtWnI90FLCXkBK1BHZ3pyIvsQmKxu2R0Mj1qAnlrUez21qKcWtUg1_EIPJ4iOEQZHrAM6ao7vOSbsdOndf_gPctJ_FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880670509</pqid></control><display><type>article</type><title>Invariant representative cocycles of cohomology generators using irregular graph pyramids</title><source>ScienceDirect Freedom Collection</source><creator>Gonzalez-Diaz, Rocio ; Ion, Adrian ; Iglesias-Ham, Mabel ; Kropatsch, Walter G.</creator><creatorcontrib>Gonzalez-Diaz, Rocio ; Ion, Adrian ; Iglesias-Ham, Mabel ; Kropatsch, Walter G.</creatorcontrib><description>► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid. Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.12.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>C (programming language) ; Graph pyramids ; Graphs ; Homology ; Invariants ; Pattern recognition ; Pyramids ; Representative cocycles of cohomology generators ; Topology</subject><ispartof>Computer vision and image understanding, 2011-07, Vol.115 (7), p.1011-1022</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</citedby><cites>FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gonzalez-Diaz, Rocio</creatorcontrib><creatorcontrib>Ion, Adrian</creatorcontrib><creatorcontrib>Iglesias-Ham, Mabel</creatorcontrib><creatorcontrib>Kropatsch, Walter G.</creatorcontrib><title>Invariant representative cocycles of cohomology generators using irregular graph pyramids</title><title>Computer vision and image understanding</title><description>► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid. Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.</description><subject>C (programming language)</subject><subject>Graph pyramids</subject><subject>Graphs</subject><subject>Homology</subject><subject>Invariants</subject><subject>Pattern recognition</subject><subject>Pyramids</subject><subject>Representative cocycles of cohomology generators</subject><subject>Topology</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxYMoWKtfwFNunlJn0zTZBS9S_AcFLz3oaVkns-mWNBtnk0C-vY317Gkew_sN814U3QpYCBD5_X6Bg-sXKUyLdAGgzqKZAAVJulx9nE-6KJKlyNLL6CqEPYAQmRKz6POtGQw703QxU8sUqOlM5waK0eOINYXY26Pe-YOvfTXGFTXEpvMc4j64poodM1V9bTiu2LS7uB3ZHFwZrqMLa-pAN39zHm2fn7br12Tz_vK2ftwkuCzyLsFCqByzAlGkuZIrgUoClUiltGQzKxBSi0ZZAZipUlkrTSlzaU1GX0W5nEd3p7Mt---eQqcPLiDVtWnI90FLCXkBK1BHZ3pyIvsQmKxu2R0Mj1qAnlrUez21qKcWtUg1_EIPJ4iOEQZHrAM6ao7vOSbsdOndf_gPctJ_FA</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Gonzalez-Diaz, Rocio</creator><creator>Ion, Adrian</creator><creator>Iglesias-Ham, Mabel</creator><creator>Kropatsch, Walter G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Invariant representative cocycles of cohomology generators using irregular graph pyramids</title><author>Gonzalez-Diaz, Rocio ; Ion, Adrian ; Iglesias-Ham, Mabel ; Kropatsch, Walter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C (programming language)</topic><topic>Graph pyramids</topic><topic>Graphs</topic><topic>Homology</topic><topic>Invariants</topic><topic>Pattern recognition</topic><topic>Pyramids</topic><topic>Representative cocycles of cohomology generators</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Diaz, Rocio</creatorcontrib><creatorcontrib>Ion, Adrian</creatorcontrib><creatorcontrib>Iglesias-Ham, Mabel</creatorcontrib><creatorcontrib>Kropatsch, Walter G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Diaz, Rocio</au><au>Ion, Adrian</au><au>Iglesias-Ham, Mabel</au><au>Kropatsch, Walter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant representative cocycles of cohomology generators using irregular graph pyramids</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>115</volume><issue>7</issue><spage>1011</spage><epage>1022</epage><pages>1011-1022</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid. Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.12.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2011-07, Vol.115 (7), p.1011-1022
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_880670509
source ScienceDirect Freedom Collection
subjects C (programming language)
Graph pyramids
Graphs
Homology
Invariants
Pattern recognition
Pyramids
Representative cocycles of cohomology generators
Topology
title Invariant representative cocycles of cohomology generators using irregular graph pyramids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20representative%20cocycles%20of%20cohomology%20generators%20using%20irregular%20graph%20pyramids&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Gonzalez-Diaz,%20Rocio&rft.date=2011-07-01&rft.volume=115&rft.issue=7&rft.spage=1011&rft.epage=1022&rft.pages=1011-1022&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2010.12.009&rft_dat=%3Cproquest_cross%3E880670509%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880670509&rft_id=info:pmid/&rfr_iscdi=true