Loading…
Invariant representative cocycles of cohomology generators using irregular graph pyramids
► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotati...
Saved in:
Published in: | Computer vision and image understanding 2011-07, Vol.115 (7), p.1011-1022 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3 |
container_end_page | 1022 |
container_issue | 7 |
container_start_page | 1011 |
container_title | Computer vision and image understanding |
container_volume | 115 |
creator | Gonzalez-Diaz, Rocio Ion, Adrian Iglesias-Ham, Mabel Kropatsch, Walter G. |
description | ► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid.
Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given. |
doi_str_mv | 10.1016/j.cviu.2010.12.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880670509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314211000774</els_id><sourcerecordid>880670509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxYMoWKtfwFNunlJn0zTZBS9S_AcFLz3oaVkns-mWNBtnk0C-vY317Gkew_sN814U3QpYCBD5_X6Bg-sXKUyLdAGgzqKZAAVJulx9nE-6KJKlyNLL6CqEPYAQmRKz6POtGQw703QxU8sUqOlM5waK0eOINYXY26Pe-YOvfTXGFTXEpvMc4j64poodM1V9bTiu2LS7uB3ZHFwZrqMLa-pAN39zHm2fn7br12Tz_vK2ftwkuCzyLsFCqByzAlGkuZIrgUoClUiltGQzKxBSi0ZZAZipUlkrTSlzaU1GX0W5nEd3p7Mt---eQqcPLiDVtWnI90FLCXkBK1BHZ3pyIvsQmKxu2R0Mj1qAnlrUez21qKcWtUg1_EIPJ4iOEQZHrAM6ao7vOSbsdOndf_gPctJ_FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880670509</pqid></control><display><type>article</type><title>Invariant representative cocycles of cohomology generators using irregular graph pyramids</title><source>ScienceDirect Freedom Collection</source><creator>Gonzalez-Diaz, Rocio ; Ion, Adrian ; Iglesias-Ham, Mabel ; Kropatsch, Walter G.</creator><creatorcontrib>Gonzalez-Diaz, Rocio ; Ion, Adrian ; Iglesias-Ham, Mabel ; Kropatsch, Walter G.</creatorcontrib><description>► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid.
Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.12.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>C (programming language) ; Graph pyramids ; Graphs ; Homology ; Invariants ; Pattern recognition ; Pyramids ; Representative cocycles of cohomology generators ; Topology</subject><ispartof>Computer vision and image understanding, 2011-07, Vol.115 (7), p.1011-1022</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</citedby><cites>FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gonzalez-Diaz, Rocio</creatorcontrib><creatorcontrib>Ion, Adrian</creatorcontrib><creatorcontrib>Iglesias-Ham, Mabel</creatorcontrib><creatorcontrib>Kropatsch, Walter G.</creatorcontrib><title>Invariant representative cocycles of cohomology generators using irregular graph pyramids</title><title>Computer vision and image understanding</title><description>► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid.
Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.</description><subject>C (programming language)</subject><subject>Graph pyramids</subject><subject>Graphs</subject><subject>Homology</subject><subject>Invariants</subject><subject>Pattern recognition</subject><subject>Pyramids</subject><subject>Representative cocycles of cohomology generators</subject><subject>Topology</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxYMoWKtfwFNunlJn0zTZBS9S_AcFLz3oaVkns-mWNBtnk0C-vY317Gkew_sN814U3QpYCBD5_X6Bg-sXKUyLdAGgzqKZAAVJulx9nE-6KJKlyNLL6CqEPYAQmRKz6POtGQw703QxU8sUqOlM5waK0eOINYXY26Pe-YOvfTXGFTXEpvMc4j64poodM1V9bTiu2LS7uB3ZHFwZrqMLa-pAN39zHm2fn7br12Tz_vK2ftwkuCzyLsFCqByzAlGkuZIrgUoClUiltGQzKxBSi0ZZAZipUlkrTSlzaU1GX0W5nEd3p7Mt---eQqcPLiDVtWnI90FLCXkBK1BHZ3pyIvsQmKxu2R0Mj1qAnlrUez21qKcWtUg1_EIPJ4iOEQZHrAM6ao7vOSbsdOndf_gPctJ_FA</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Gonzalez-Diaz, Rocio</creator><creator>Ion, Adrian</creator><creator>Iglesias-Ham, Mabel</creator><creator>Kropatsch, Walter G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Invariant representative cocycles of cohomology generators using irregular graph pyramids</title><author>Gonzalez-Diaz, Rocio ; Ion, Adrian ; Iglesias-Ham, Mabel ; Kropatsch, Walter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C (programming language)</topic><topic>Graph pyramids</topic><topic>Graphs</topic><topic>Homology</topic><topic>Invariants</topic><topic>Pattern recognition</topic><topic>Pyramids</topic><topic>Representative cocycles of cohomology generators</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Diaz, Rocio</creatorcontrib><creatorcontrib>Ion, Adrian</creatorcontrib><creatorcontrib>Iglesias-Ham, Mabel</creatorcontrib><creatorcontrib>Kropatsch, Walter G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Diaz, Rocio</au><au>Ion, Adrian</au><au>Iglesias-Ham, Mabel</au><au>Kropatsch, Walter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant representative cocycles of cohomology generators using irregular graph pyramids</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>115</volume><issue>7</issue><spage>1011</spage><epage>1022</epage><pages>1011-1022</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>► We compute representative cocycles invariant to scanning and rotation of the object. ► A graph pyramid provides a reduced object-representation (ROR), preserving topology. ► Cocycles in the ROR are down-projected to the original object, in the pyramid. ► Rotation invariance is achieved by a rotation invariant construction of the pyramid.
Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.12.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 2011-07, Vol.115 (7), p.1011-1022 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_880670509 |
source | ScienceDirect Freedom Collection |
subjects | C (programming language) Graph pyramids Graphs Homology Invariants Pattern recognition Pyramids Representative cocycles of cohomology generators Topology |
title | Invariant representative cocycles of cohomology generators using irregular graph pyramids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20representative%20cocycles%20of%20cohomology%20generators%20using%20irregular%20graph%20pyramids&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Gonzalez-Diaz,%20Rocio&rft.date=2011-07-01&rft.volume=115&rft.issue=7&rft.spage=1011&rft.epage=1022&rft.pages=1011-1022&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2010.12.009&rft_dat=%3Cproquest_cross%3E880670509%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-c7196c47cc1269851c980edced8fef4f1c02fca9f10c49d9ff8ad868fa4eb7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880670509&rft_id=info:pmid/&rfr_iscdi=true |