Loading…
Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties
In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together...
Saved in:
Published in: | Journal of optics (2010) 2009-10, Vol.11 (10), p.105205-105205 (8) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093 |
container_end_page | 105205 (8) |
container_issue | 10 |
container_start_page | 105205 |
container_title | Journal of optics (2010) |
container_volume | 11 |
creator | Maram Q, R Baghban, H Rasooli S, H Ghorbani, R Rostami, A |
description | In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results. |
doi_str_mv | 10.1088/1464-4258/11/10/105205 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880671943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34910743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhU1JoXn9haBN05UTjSxLdnYhpEkh0E26FnP1oCq25atHIP--ur1psgkBgQ6ab86IM01zBvQC6DBcAhe85ayvCi6B1tMz2n9qDkFyaLteyIOq_0NfmqOU_lBKRT_CYVNut8U_4WSXTLSPuvhM5mDsRIIj24JLLjMxIZNkZ6_DYorOIZKwZq9xIjivk3fexnRFzPOClSEb-xuffCiR4GJIwlwiZh8Wssaw2pi9TSfNZ4dTsqcv93Hz6_vt4819-_Dz7sfN9UOrORty64zopDbOcL6pCjWOIxO1ZnvqWA8UHDAphekHzrTrTK2CoYZ2aOiGjt1x823vW0dvi01ZzT5pO0242FCSGgYqJIy8q-T5h2THR6DyHyj2oI4hpWidWqOfMT4roGq3D7WLWu2iVgD7x90-auPXlwmYanQu4qJ9eu1mjEohB1m5ds_5sL55v-upVuMqD-_wH__lL2-_qSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34910743</pqid></control><display><type>article</type><title>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Maram Q, R ; Baghban, H ; Rasooli S, H ; Ghorbani, R ; Rostami, A</creator><creatorcontrib>Maram Q, R ; Baghban, H ; Rasooli S, H ; Ghorbani, R ; Rostami, A</creatorcontrib><description>In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results.</description><identifier>ISSN: 1464-4258</identifier><identifier>ISSN: 2040-8978</identifier><identifier>EISSN: 1741-3567</identifier><identifier>DOI: 10.1088/1464-4258/11/10/105205</identifier><identifier>CODEN: JOAOF8</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electronics ; Equivalent circuits ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gain ; Laser optical systems: design and operation ; Mathematical models ; Optics ; Physics ; Quantum dots ; Resonators, cavities, amplifiers, arrays, and rings ; Saturation ; Semiconductor optical amplifiers ; Spices</subject><ispartof>Journal of optics (2010), 2009-10, Vol.11 (10), p.105205-105205 (8)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</citedby><cites>FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22076787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maram Q, R</creatorcontrib><creatorcontrib>Baghban, H</creatorcontrib><creatorcontrib>Rasooli S, H</creatorcontrib><creatorcontrib>Ghorbani, R</creatorcontrib><creatorcontrib>Rostami, A</creatorcontrib><title>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</title><title>Journal of optics (2010)</title><description>In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results.</description><subject>Electronics</subject><subject>Equivalent circuits</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gain</subject><subject>Laser optical systems: design and operation</subject><subject>Mathematical models</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Resonators, cavities, amplifiers, arrays, and rings</subject><subject>Saturation</subject><subject>Semiconductor optical amplifiers</subject><subject>Spices</subject><issn>1464-4258</issn><issn>2040-8978</issn><issn>1741-3567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3TAQhU1JoXn9haBN05UTjSxLdnYhpEkh0E26FnP1oCq25atHIP--ur1psgkBgQ6ab86IM01zBvQC6DBcAhe85ayvCi6B1tMz2n9qDkFyaLteyIOq_0NfmqOU_lBKRT_CYVNut8U_4WSXTLSPuvhM5mDsRIIj24JLLjMxIZNkZ6_DYorOIZKwZq9xIjivk3fexnRFzPOClSEb-xuffCiR4GJIwlwiZh8Wssaw2pi9TSfNZ4dTsqcv93Hz6_vt4819-_Dz7sfN9UOrORty64zopDbOcL6pCjWOIxO1ZnvqWA8UHDAphekHzrTrTK2CoYZ2aOiGjt1x823vW0dvi01ZzT5pO0242FCSGgYqJIy8q-T5h2THR6DyHyj2oI4hpWidWqOfMT4roGq3D7WLWu2iVgD7x90-auPXlwmYanQu4qJ9eu1mjEohB1m5ds_5sL55v-upVuMqD-_wH__lL2-_qSU</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Maram Q, R</creator><creator>Baghban, H</creator><creator>Rasooli S, H</creator><creator>Ghorbani, R</creator><creator>Rostami, A</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20091001</creationdate><title>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</title><author>Maram Q, R ; Baghban, H ; Rasooli S, H ; Ghorbani, R ; Rostami, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Electronics</topic><topic>Equivalent circuits</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gain</topic><topic>Laser optical systems: design and operation</topic><topic>Mathematical models</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Resonators, cavities, amplifiers, arrays, and rings</topic><topic>Saturation</topic><topic>Semiconductor optical amplifiers</topic><topic>Spices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maram Q, R</creatorcontrib><creatorcontrib>Baghban, H</creatorcontrib><creatorcontrib>Rasooli S, H</creatorcontrib><creatorcontrib>Ghorbani, R</creatorcontrib><creatorcontrib>Rostami, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of optics (2010)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maram Q, R</au><au>Baghban, H</au><au>Rasooli S, H</au><au>Ghorbani, R</au><au>Rostami, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</atitle><jtitle>Journal of optics (2010)</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>11</volume><issue>10</issue><spage>105205</spage><epage>105205 (8)</epage><pages>105205-105205 (8)</pages><issn>1464-4258</issn><issn>2040-8978</issn><eissn>1741-3567</eissn><coden>JOAOF8</coden><abstract>In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1464-4258/11/10/105205</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4258 |
ispartof | Journal of optics (2010), 2009-10, Vol.11 (10), p.105205-105205 (8) |
issn | 1464-4258 2040-8978 1741-3567 |
language | eng |
recordid | cdi_proquest_miscellaneous_880671943 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Electronics Equivalent circuits Exact sciences and technology Fundamental areas of phenomenology (including applications) Gain Laser optical systems: design and operation Mathematical models Optics Physics Quantum dots Resonators, cavities, amplifiers, arrays, and rings Saturation Semiconductor optical amplifiers Spices |
title | Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20circuit%20model%20of%20quantum%20dot%20semiconductor%20optical%20amplifiers:%20dynamic%20behaviour%20and%20saturation%20properties&rft.jtitle=Journal%20of%20optics%20(2010)&rft.au=Maram%20Q,%20R&rft.date=2009-10-01&rft.volume=11&rft.issue=10&rft.spage=105205&rft.epage=105205%20(8)&rft.pages=105205-105205%20(8)&rft.issn=1464-4258&rft.eissn=1741-3567&rft.coden=JOAOF8&rft_id=info:doi/10.1088/1464-4258/11/10/105205&rft_dat=%3Cproquest_cross%3E34910743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34910743&rft_id=info:pmid/&rfr_iscdi=true |