Loading…

Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties

In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optics (2010) 2009-10, Vol.11 (10), p.105205-105205 (8)
Main Authors: Maram Q, R, Baghban, H, Rasooli S, H, Ghorbani, R, Rostami, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093
cites cdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093
container_end_page 105205 (8)
container_issue 10
container_start_page 105205
container_title Journal of optics (2010)
container_volume 11
creator Maram Q, R
Baghban, H
Rasooli S, H
Ghorbani, R
Rostami, A
description In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results.
doi_str_mv 10.1088/1464-4258/11/10/105205
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880671943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34910743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhU1JoXn9haBN05UTjSxLdnYhpEkh0E26FnP1oCq25atHIP--ur1psgkBgQ6ab86IM01zBvQC6DBcAhe85ayvCi6B1tMz2n9qDkFyaLteyIOq_0NfmqOU_lBKRT_CYVNut8U_4WSXTLSPuvhM5mDsRIIj24JLLjMxIZNkZ6_DYorOIZKwZq9xIjivk3fexnRFzPOClSEb-xuffCiR4GJIwlwiZh8Wssaw2pi9TSfNZ4dTsqcv93Hz6_vt4819-_Dz7sfN9UOrORty64zopDbOcL6pCjWOIxO1ZnvqWA8UHDAphekHzrTrTK2CoYZ2aOiGjt1x823vW0dvi01ZzT5pO0242FCSGgYqJIy8q-T5h2THR6DyHyj2oI4hpWidWqOfMT4roGq3D7WLWu2iVgD7x90-auPXlwmYanQu4qJ9eu1mjEohB1m5ds_5sL55v-upVuMqD-_wH__lL2-_qSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34910743</pqid></control><display><type>article</type><title>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Maram Q, R ; Baghban, H ; Rasooli S, H ; Ghorbani, R ; Rostami, A</creator><creatorcontrib>Maram Q, R ; Baghban, H ; Rasooli S, H ; Ghorbani, R ; Rostami, A</creatorcontrib><description>In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results.</description><identifier>ISSN: 1464-4258</identifier><identifier>ISSN: 2040-8978</identifier><identifier>EISSN: 1741-3567</identifier><identifier>DOI: 10.1088/1464-4258/11/10/105205</identifier><identifier>CODEN: JOAOF8</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electronics ; Equivalent circuits ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gain ; Laser optical systems: design and operation ; Mathematical models ; Optics ; Physics ; Quantum dots ; Resonators, cavities, amplifiers, arrays, and rings ; Saturation ; Semiconductor optical amplifiers ; Spices</subject><ispartof>Journal of optics (2010), 2009-10, Vol.11 (10), p.105205-105205 (8)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</citedby><cites>FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22076787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maram Q, R</creatorcontrib><creatorcontrib>Baghban, H</creatorcontrib><creatorcontrib>Rasooli S, H</creatorcontrib><creatorcontrib>Ghorbani, R</creatorcontrib><creatorcontrib>Rostami, A</creatorcontrib><title>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</title><title>Journal of optics (2010)</title><description>In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results.</description><subject>Electronics</subject><subject>Equivalent circuits</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gain</subject><subject>Laser optical systems: design and operation</subject><subject>Mathematical models</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Resonators, cavities, amplifiers, arrays, and rings</subject><subject>Saturation</subject><subject>Semiconductor optical amplifiers</subject><subject>Spices</subject><issn>1464-4258</issn><issn>2040-8978</issn><issn>1741-3567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3TAQhU1JoXn9haBN05UTjSxLdnYhpEkh0E26FnP1oCq25atHIP--ur1psgkBgQ6ab86IM01zBvQC6DBcAhe85ayvCi6B1tMz2n9qDkFyaLteyIOq_0NfmqOU_lBKRT_CYVNut8U_4WSXTLSPuvhM5mDsRIIj24JLLjMxIZNkZ6_DYorOIZKwZq9xIjivk3fexnRFzPOClSEb-xuffCiR4GJIwlwiZh8Wssaw2pi9TSfNZ4dTsqcv93Hz6_vt4819-_Dz7sfN9UOrORty64zopDbOcL6pCjWOIxO1ZnvqWA8UHDAphekHzrTrTK2CoYZ2aOiGjt1x823vW0dvi01ZzT5pO0242FCSGgYqJIy8q-T5h2THR6DyHyj2oI4hpWidWqOfMT4roGq3D7WLWu2iVgD7x90-auPXlwmYanQu4qJ9eu1mjEohB1m5ds_5sL55v-upVuMqD-_wH__lL2-_qSU</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Maram Q, R</creator><creator>Baghban, H</creator><creator>Rasooli S, H</creator><creator>Ghorbani, R</creator><creator>Rostami, A</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20091001</creationdate><title>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</title><author>Maram Q, R ; Baghban, H ; Rasooli S, H ; Ghorbani, R ; Rostami, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Electronics</topic><topic>Equivalent circuits</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gain</topic><topic>Laser optical systems: design and operation</topic><topic>Mathematical models</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Resonators, cavities, amplifiers, arrays, and rings</topic><topic>Saturation</topic><topic>Semiconductor optical amplifiers</topic><topic>Spices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maram Q, R</creatorcontrib><creatorcontrib>Baghban, H</creatorcontrib><creatorcontrib>Rasooli S, H</creatorcontrib><creatorcontrib>Ghorbani, R</creatorcontrib><creatorcontrib>Rostami, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of optics (2010)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maram Q, R</au><au>Baghban, H</au><au>Rasooli S, H</au><au>Ghorbani, R</au><au>Rostami, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties</atitle><jtitle>Journal of optics (2010)</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>11</volume><issue>10</issue><spage>105205</spage><epage>105205 (8)</epage><pages>105205-105205 (8)</pages><issn>1464-4258</issn><issn>2040-8978</issn><eissn>1741-3567</eissn><coden>JOAOF8</coden><abstract>In this paper, we derive an equivalent circuit model for a quantum dot semiconductor optical amplifier (QD-SOA) by employing rate equations for electronic transitions between the QD's levels and also the optical power propagation. The different parts of the equivalent circuits interact together to represent the gain recovery process, saturation properties and chirp behaviour in both linear and nonlinear operation regimes of the QD-SOA. The equivalent circuits are then used for SPICE simulation. We have also applied a control pulse to decrease the gain recovery time using the cross-gain modulation (XGM) effect, and the equivalent circuit of this source has been discussed. The Tb s-1 operation capability can be illustrated using this approach. We have shown that SPICE simulation results agree well with the full numerically calculated results.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1464-4258/11/10/105205</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1464-4258
ispartof Journal of optics (2010), 2009-10, Vol.11 (10), p.105205-105205 (8)
issn 1464-4258
2040-8978
1741-3567
language eng
recordid cdi_proquest_miscellaneous_880671943
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Electronics
Equivalent circuits
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Gain
Laser optical systems: design and operation
Mathematical models
Optics
Physics
Quantum dots
Resonators, cavities, amplifiers, arrays, and rings
Saturation
Semiconductor optical amplifiers
Spices
title Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20circuit%20model%20of%20quantum%20dot%20semiconductor%20optical%20amplifiers:%20dynamic%20behaviour%20and%20saturation%20properties&rft.jtitle=Journal%20of%20optics%20(2010)&rft.au=Maram%20Q,%20R&rft.date=2009-10-01&rft.volume=11&rft.issue=10&rft.spage=105205&rft.epage=105205%20(8)&rft.pages=105205-105205%20(8)&rft.issn=1464-4258&rft.eissn=1741-3567&rft.coden=JOAOF8&rft_id=info:doi/10.1088/1464-4258/11/10/105205&rft_dat=%3Cproquest_cross%3E34910743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-fd637cdfd44b637aca9926c42e50f25101f12776d5842cf3d9261d0d03ad0b093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34910743&rft_id=info:pmid/&rfr_iscdi=true