Loading…

Silicon Carbide-Based Remote Wireless Optical Pressure Sensor

Proposed is a silicon carbide (SiC) weak-lensing-effect-based wireless optical sensor that allows safe, repeatable, and accurate pressure measurement suitable for harsh environments. This completely passive front-end sensor design uses a remoted free-space optical beam that targets a single crystal...

Full description

Saved in:
Bibliographic Details
Published in:IEEE photonics technology letters 2007-04, Vol.19 (7), p.504-506
Main Authors: Riza, N.A., Ghauri, F., Perez, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proposed is a silicon carbide (SiC) weak-lensing-effect-based wireless optical sensor that allows safe, repeatable, and accurate pressure measurement suitable for harsh environments. This completely passive front-end sensor design uses a remoted free-space optical beam that targets a single crystal SiC chip fitted as an optical window within a pressure capsule. With increasing differential capsule pressure, the SiC chip forms a weak convex mirror with a changing focal length. By monitoring the chip reflected light beam magnification, pressure in the capsule is determined. Using a 633-nm wavelength laser beam, the proposed sensor is experimentally tested at room temperature for 0- to 600-psi (0-41atm) differential pressures and a remoting distance of 2.5 m
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2007.893752