Loading…
Streak camera in standard (Bi)CMOS (bipolar complementary metal-oxide-semiconductor) technology
The conventional streak camera (CSC) is an optoelectronic instrument that captures the spatial distribution as a function of time of an ultra high-speed luminous phenomenon with picosecond temporal resolution and a typical spatial resolution of several tens of micrometers. This paper presents two tu...
Saved in:
Published in: | Measurement science & technology 2010-11, Vol.21 (11), p.115203-115203 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The conventional streak camera (CSC) is an optoelectronic instrument that captures the spatial distribution as a function of time of an ultra high-speed luminous phenomenon with picosecond temporal resolution and a typical spatial resolution of several tens of micrometers. This paper presents two tubeless streak camera architectures called MISC (matrix integrated streak camera) and VISC (vector integrated streak camera), which replicate the functionality of a CSC on a single CMOS chip. The MISC structure consists of a lens, which spreads the photon flux on the surface of a specific pixel array-based (Bi)CMOS sensor. The VISC architecture is based on a sensor featuring a single column of photodetectors, where each element is coupled to a front-end and a multi-sampling and storage unit. In this case the optical objective used in front of the sensor focuses the luminous event on the several tens of micrometers wide photosensitive column. For both architectures, the spatial resolution is linked to the size of the photodetector and the temporal resolution is determined by the bandwidths of the photodetectors and the signal conditioning electronics. The capture of a 6 ns full width at half maximum 532 nm laser pulse is reported for two generations of MISC and a first generation of VISC. |
---|---|
ISSN: | 0957-0233 1361-6501 |
DOI: | 10.1088/0957-0233/21/11/115203 |