Loading…
Analysis of stress concentration around a spheroidal cavity under asymmetric dynamic loading
The fracture and fatigue properties of porous materials are strongly influenced by stress concentrations around the pores. In addition, failure of structural components initiates at locations of high stress concentration which is often caused by holes, inclusions or other discontinuities. In view of...
Saved in:
Published in: | International journal of solids and structures 2011-07, Vol.48 (14), p.2255-2263 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fracture and fatigue properties of porous materials are strongly influenced by stress concentrations around the pores. In addition, failure of structural components initiates at locations of high stress concentration which is often caused by holes, inclusions or other discontinuities. In view of this, the stress concentration around a spheroidal cavity embedded in an elastic medium is studied under dynamic loading conditions. While solutions abound for static loads, only limited solutions exist for dynamic loads. The stress field around a spheroidal cavity is determined by using a hybrid methodology that combines the finite element technique with a spherical wave function expansion method. The stress concentrations within the matrix are found to be dependent on the frequency of excitation, aspect ratio of the cavity and the Poisson’s ratio of the matrix. The study reveals that dynamic stress concentrations can reach much higher values than those encountered under static loading. |
---|---|
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2011.04.001 |