Loading…
Divergence Properties of the Nonstandard Finite Difference Methods
Yee's classic algorithm was proved to be divergence-free in source-free regions. However, the divergence properties of the nonstandard finite difference (NSFD) methods have not been addressed. In this letter, we investigate the divergence nature of the NSFD (2,2) and (2,4) algorithms. Both the...
Saved in:
Published in: | IEEE microwave and wireless components letters 2007-02, Vol.17 (2), p.88-90 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-42bd6c966efa8d7f8076849d824d41cce246e3aea77ce9704957ccf68e3ce6f93 |
container_end_page | 90 |
container_issue | 2 |
container_start_page | 88 |
container_title | IEEE microwave and wireless components letters |
container_volume | 17 |
creator | Bo Yang Balanis, C.A. |
description | Yee's classic algorithm was proved to be divergence-free in source-free regions. However, the divergence properties of the nonstandard finite difference (NSFD) methods have not been addressed. In this letter, we investigate the divergence nature of the NSFD (2,2) and (2,4) algorithms. Both the differential and integral forms of Gauss's Law are examined |
doi_str_mv | 10.1109/LMWC.2006.890172 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_880676758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4079646</ieee_id><sourcerecordid>880676758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-42bd6c966efa8d7f8076849d824d41cce246e3aea77ce9704957ccf68e3ce6f93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3wcsiqKetySabj6O2VoVWPSgeQ8xObMp2tyZbwX_vrisKHjzNwDzzDvMgdEjwiBCszmfz5_Eow5iPpMJEZFtoQPJcpkRwtt31lKSEYrWL9mJcYkyYZGSALif-HcIrVBaSh1CvITQeYlK7pFlAcldXsTFVYUKRTH3lG0gm3jkIX_wcmkVdxH2040wZ4eC7DtHT9OpxfJPO7q9vxxez1FLKm5RlLwW3inNwRhbCSSy4ZKqQGSsYsRYyxoEaMEJYUAIzlQtrHZdALXCn6BCd9bnrUL9tIDZ65aOFsjQV1JuopcRccJHLljz9l6SMKSE4bcHjP-Cy3oSq_UJLzjjBGc1bCPeQDXWMAZxeB78y4UMTrDv3unOvO_e6d9-unHznmmhN6YKprI-_ezLHlJAu-qjnPAD8jBkWqr1OPwGXhovR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864610235</pqid></control><display><type>article</type><title>Divergence Properties of the Nonstandard Finite Difference Methods</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bo Yang ; Balanis, C.A.</creator><creatorcontrib>Bo Yang ; Balanis, C.A.</creatorcontrib><description>Yee's classic algorithm was proved to be divergence-free in source-free regions. However, the divergence properties of the nonstandard finite difference (NSFD) methods have not been addressed. In this letter, we investigate the divergence nature of the NSFD (2,2) and (2,4) algorithms. Both the differential and integral forms of Gauss's Law are examined</description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2006.890172</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied classical electromagnetism ; Difference equations ; Differential equations ; Divergence ; Divergence equations ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Finite difference method ; Finite difference methods ; finite-difference time-domain (FDTD) methods ; Frequency ; Fundamental areas of phenomenology (including applications) ; Gaussian processes ; Integral equations ; Integrals ; Law ; Magnetic fields ; Mathematical analysis ; Microwaves ; nonstandard finite difference (NSFD) ; Physics ; rectangular meshes ; Time domain analysis</subject><ispartof>IEEE microwave and wireless components letters, 2007-02, Vol.17 (2), p.88-90</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-42bd6c966efa8d7f8076849d824d41cce246e3aea77ce9704957ccf68e3ce6f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4079646$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18503115$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bo Yang</creatorcontrib><creatorcontrib>Balanis, C.A.</creatorcontrib><title>Divergence Properties of the Nonstandard Finite Difference Methods</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description>Yee's classic algorithm was proved to be divergence-free in source-free regions. However, the divergence properties of the nonstandard finite difference (NSFD) methods have not been addressed. In this letter, we investigate the divergence nature of the NSFD (2,2) and (2,4) algorithms. Both the differential and integral forms of Gauss's Law are examined</description><subject>Algorithms</subject><subject>Applied classical electromagnetism</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Divergence</subject><subject>Divergence equations</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>finite-difference time-domain (FDTD) methods</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gaussian processes</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Law</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Microwaves</subject><subject>nonstandard finite difference (NSFD)</subject><subject>Physics</subject><subject>rectangular meshes</subject><subject>Time domain analysis</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3wcsiqKetySabj6O2VoVWPSgeQ8xObMp2tyZbwX_vrisKHjzNwDzzDvMgdEjwiBCszmfz5_Eow5iPpMJEZFtoQPJcpkRwtt31lKSEYrWL9mJcYkyYZGSALif-HcIrVBaSh1CvITQeYlK7pFlAcldXsTFVYUKRTH3lG0gm3jkIX_wcmkVdxH2040wZ4eC7DtHT9OpxfJPO7q9vxxez1FLKm5RlLwW3inNwRhbCSSy4ZKqQGSsYsRYyxoEaMEJYUAIzlQtrHZdALXCn6BCd9bnrUL9tIDZ65aOFsjQV1JuopcRccJHLljz9l6SMKSE4bcHjP-Cy3oSq_UJLzjjBGc1bCPeQDXWMAZxeB78y4UMTrDv3unOvO_e6d9-unHznmmhN6YKprI-_ezLHlJAu-qjnPAD8jBkWqr1OPwGXhovR</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Bo Yang</creator><creator>Balanis, C.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070201</creationdate><title>Divergence Properties of the Nonstandard Finite Difference Methods</title><author>Bo Yang ; Balanis, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-42bd6c966efa8d7f8076849d824d41cce246e3aea77ce9704957ccf68e3ce6f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied classical electromagnetism</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Divergence</topic><topic>Divergence equations</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>finite-difference time-domain (FDTD) methods</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gaussian processes</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Law</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Microwaves</topic><topic>nonstandard finite difference (NSFD)</topic><topic>Physics</topic><topic>rectangular meshes</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo Yang</creatorcontrib><creatorcontrib>Balanis, C.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo Yang</au><au>Balanis, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence Properties of the Nonstandard Finite Difference Methods</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2007-02-01</date><risdate>2007</risdate><volume>17</volume><issue>2</issue><spage>88</spage><epage>90</epage><pages>88-90</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract>Yee's classic algorithm was proved to be divergence-free in source-free regions. However, the divergence properties of the nonstandard finite difference (NSFD) methods have not been addressed. In this letter, we investigate the divergence nature of the NSFD (2,2) and (2,4) algorithms. Both the differential and integral forms of Gauss's Law are examined</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LMWC.2006.890172</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1531-1309 |
ispartof | IEEE microwave and wireless components letters, 2007-02, Vol.17 (2), p.88-90 |
issn | 1531-1309 2771-957X 1558-1764 2771-9588 |
language | eng |
recordid | cdi_proquest_miscellaneous_880676758 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied classical electromagnetism Difference equations Differential equations Divergence Divergence equations Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Exact sciences and technology Finite difference method Finite difference methods finite-difference time-domain (FDTD) methods Frequency Fundamental areas of phenomenology (including applications) Gaussian processes Integral equations Integrals Law Magnetic fields Mathematical analysis Microwaves nonstandard finite difference (NSFD) Physics rectangular meshes Time domain analysis |
title | Divergence Properties of the Nonstandard Finite Difference Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence%20Properties%20of%20the%20Nonstandard%20Finite%20Difference%20Methods&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Bo%20Yang&rft.date=2007-02-01&rft.volume=17&rft.issue=2&rft.spage=88&rft.epage=90&rft.pages=88-90&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2006.890172&rft_dat=%3Cproquest_pasca%3E880676758%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-42bd6c966efa8d7f8076849d824d41cce246e3aea77ce9704957ccf68e3ce6f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864610235&rft_id=info:pmid/&rft_ieee_id=4079646&rfr_iscdi=true |