Loading…
Hybrid superconductor–ferromagnet transistor-like device
We demonstrate theoretically and experimentally that a ferromagnetic layer as thin as a few nanometres, which is almost transparent for non-superconducting charge transport, can be used as a cut-off filter to block transport of charge-carrier superconducting correlations. This property may be exploi...
Saved in:
Published in: | Superconductor science & technology 2011-02, Vol.24 (2), p.024009-024009 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate theoretically and experimentally that a ferromagnetic layer as thin as a few nanometres, which is almost transparent for non-superconducting charge transport, can be used as a cut-off filter to block transport of charge-carrier superconducting correlations. This property may be exploited in some applications, as is exemplified by the case of double-barrier S1IS2FIS3 multi-terminal devices (with S, I, and F denoting a superconductor, an insulator, and a ferromagnetic metal, respectively), whose principle of operation is based on a nonequilibrium superconducting state driven by tunnel injection of quasiparticles. Using the F layer makes the device asymmetric and considerably improves input--output isolation in comparison with the formerly investigated symmetric S1IS2IS3 devices. |
---|---|
ISSN: | 0953-2048 1361-6668 |
DOI: | 10.1088/0953-2048/24/2/024009 |