Loading…
Lyapunov exponents of Green’s functions for random potentials tending to zero
We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ + γV , where the potentials , are i.i.d. nonnegative random variables and γ > 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like as γ tends to 0. Here the constant c is the s...
Saved in:
Published in: | Probability theory and related fields 2011-06, Vol.150 (1-2), p.43-59 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203 |
container_end_page | 59 |
container_issue | 1-2 |
container_start_page | 43 |
container_title | Probability theory and related fields |
container_volume | 150 |
creator | Kosygina, Elena Mountford, Thomas S. Zerner, Martin P. W. |
description | We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +
γV
, where the potentials
, are i.i.d. nonnegative random variables and
γ
> 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like
as
γ
tends to 0. Here the constant
c
is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number. |
doi_str_mv | 10.1007/s00440-010-0266-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880710970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350299471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</originalsourceid><addsrcrecordid>eNp1kc1KJDEUhYOMYI_6AO6CMrgqvblJVVJLEf-gwY37EFOJlHQnZVIl07PyNXw9n8S0LSMILkIuyXdPTu4h5IDBCQOQpxlACKiAlYVNU622yIwJjhVCI36RGTCpKgU12yG_c34EAOQCZ-R2vjLDFOIzdX-HGFwYM42eXiXnwtvLa6Z-CnbsYyhVTDSZ0MUlHeJYyN4sMi1F14cHOkb6z6W4R7Z9OXb7n_suubu8uDu_rua3VzfnZ_PKCqHGSll_70H4moOTKBrnbNd4I1vOEUSrEJhQyHjTsnusy49aY2XNOiO72iLwXXK8kR1SfJpcHvWyz9YtFia4OGWtFEgGrVyTh9_IxzilULxp1UjOeXmsQEc_QWWYDCUiawvFNpRNMefkvB5SvzRppRnodQp6k4IuKeh1CnpVev58KptszcKXAdo-_29EgSD5h03ccLlchQeXvhz8LP4OmZCWlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661272219</pqid></control><display><type>article</type><title>Lyapunov exponents of Green’s functions for random potentials tending to zero</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Kosygina, Elena ; Mountford, Thomas S. ; Zerner, Martin P. W.</creator><creatorcontrib>Kosygina, Elena ; Mountford, Thomas S. ; Zerner, Martin P. W.</creatorcontrib><description>We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +
γV
, where the potentials
, are i.i.d. nonnegative random variables and
γ
> 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like
as
γ
tends to 0. Here the constant
c
is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-010-0266-y</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Annealing ; Chaos theory ; Economics ; Exact sciences and technology ; Finance ; General topics ; Green's functions ; Insurance ; Liapunov exponents ; Lyapunov exponents ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probabilistic methods ; Probability ; Probability and statistics ; Probability theory ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Quenching ; Quenching (cooling) ; Random variables ; Random walk theory ; Scalars ; Sciences and techniques of general use ; Statistics for Business ; Stochastic processes ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2011-06, Vol.150 (1-2), p.43-59</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010.</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</citedby><cites>FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2661272219/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2661272219?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,36059,44361,74665</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24207370$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosygina, Elena</creatorcontrib><creatorcontrib>Mountford, Thomas S.</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><title>Lyapunov exponents of Green’s functions for random potentials tending to zero</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +
γV
, where the potentials
, are i.i.d. nonnegative random variables and
γ
> 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like
as
γ
tends to 0. Here the constant
c
is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.</description><subject>Annealing</subject><subject>Chaos theory</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>Finance</subject><subject>General topics</subject><subject>Green's functions</subject><subject>Insurance</subject><subject>Liapunov exponents</subject><subject>Lyapunov exponents</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Quenching</subject><subject>Quenching (cooling)</subject><subject>Random variables</subject><subject>Random walk theory</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Statistics for Business</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1KJDEUhYOMYI_6AO6CMrgqvblJVVJLEf-gwY37EFOJlHQnZVIl07PyNXw9n8S0LSMILkIuyXdPTu4h5IDBCQOQpxlACKiAlYVNU622yIwJjhVCI36RGTCpKgU12yG_c34EAOQCZ-R2vjLDFOIzdX-HGFwYM42eXiXnwtvLa6Z-CnbsYyhVTDSZ0MUlHeJYyN4sMi1F14cHOkb6z6W4R7Z9OXb7n_suubu8uDu_rua3VzfnZ_PKCqHGSll_70H4moOTKBrnbNd4I1vOEUSrEJhQyHjTsnusy49aY2XNOiO72iLwXXK8kR1SfJpcHvWyz9YtFia4OGWtFEgGrVyTh9_IxzilULxp1UjOeXmsQEc_QWWYDCUiawvFNpRNMefkvB5SvzRppRnodQp6k4IuKeh1CnpVev58KptszcKXAdo-_29EgSD5h03ccLlchQeXvhz8LP4OmZCWlw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Kosygina, Elena</creator><creator>Mountford, Thomas S.</creator><creator>Zerner, Martin P. W.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>0U~</scope><scope>1-H</scope><scope>L.0</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110601</creationdate><title>Lyapunov exponents of Green’s functions for random potentials tending to zero</title><author>Kosygina, Elena ; Mountford, Thomas S. ; Zerner, Martin P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annealing</topic><topic>Chaos theory</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>Finance</topic><topic>General topics</topic><topic>Green's functions</topic><topic>Insurance</topic><topic>Liapunov exponents</topic><topic>Lyapunov exponents</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Quenching</topic><topic>Quenching (cooling)</topic><topic>Random variables</topic><topic>Random walk theory</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Statistics for Business</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosygina, Elena</creatorcontrib><creatorcontrib>Mountford, Thomas S.</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Professional Standard</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosygina, Elena</au><au>Mountford, Thomas S.</au><au>Zerner, Martin P. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov exponents of Green’s functions for random potentials tending to zero</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>150</volume><issue>1-2</issue><spage>43</spage><epage>59</epage><pages>43-59</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +
γV
, where the potentials
, are i.i.d. nonnegative random variables and
γ
> 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like
as
γ
tends to 0. Here the constant
c
is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-010-0266-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2011-06, Vol.150 (1-2), p.43-59 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_miscellaneous_880710970 |
source | ABI/INFORM Global (ProQuest); Springer Link; BSC - Ebsco (Business Source Ultimate) |
subjects | Annealing Chaos theory Economics Exact sciences and technology Finance General topics Green's functions Insurance Liapunov exponents Lyapunov exponents Management Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Probabilistic methods Probability Probability and statistics Probability theory Probability Theory and Stochastic Processes Quantitative Finance Quenching Quenching (cooling) Random variables Random walk theory Scalars Sciences and techniques of general use Statistics for Business Stochastic processes Studies Theoretical |
title | Lyapunov exponents of Green’s functions for random potentials tending to zero |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20exponents%20of%20Green%E2%80%99s%20functions%20for%20random%20potentials%20tending%20to%20zero&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Kosygina,%20Elena&rft.date=2011-06-01&rft.volume=150&rft.issue=1-2&rft.spage=43&rft.epage=59&rft.pages=43-59&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-010-0266-y&rft_dat=%3Cproquest_cross%3E2350299471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661272219&rft_id=info:pmid/&rfr_iscdi=true |