Loading…

Lyapunov exponents of Green’s functions for random potentials tending to zero

We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +  γV , where the potentials , are i.i.d.  nonnegative random variables and γ > 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like as γ tends to 0. Here the constant c is the s...

Full description

Saved in:
Bibliographic Details
Published in:Probability theory and related fields 2011-06, Vol.150 (1-2), p.43-59
Main Authors: Kosygina, Elena, Mountford, Thomas S., Zerner, Martin P. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203
cites cdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203
container_end_page 59
container_issue 1-2
container_start_page 43
container_title Probability theory and related fields
container_volume 150
creator Kosygina, Elena
Mountford, Thomas S.
Zerner, Martin P. W.
description We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +  γV , where the potentials , are i.i.d.  nonnegative random variables and γ > 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like as γ tends to 0. Here the constant c is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.
doi_str_mv 10.1007/s00440-010-0266-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880710970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350299471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</originalsourceid><addsrcrecordid>eNp1kc1KJDEUhYOMYI_6AO6CMrgqvblJVVJLEf-gwY37EFOJlHQnZVIl07PyNXw9n8S0LSMILkIuyXdPTu4h5IDBCQOQpxlACKiAlYVNU622yIwJjhVCI36RGTCpKgU12yG_c34EAOQCZ-R2vjLDFOIzdX-HGFwYM42eXiXnwtvLa6Z-CnbsYyhVTDSZ0MUlHeJYyN4sMi1F14cHOkb6z6W4R7Z9OXb7n_suubu8uDu_rua3VzfnZ_PKCqHGSll_70H4moOTKBrnbNd4I1vOEUSrEJhQyHjTsnusy49aY2XNOiO72iLwXXK8kR1SfJpcHvWyz9YtFia4OGWtFEgGrVyTh9_IxzilULxp1UjOeXmsQEc_QWWYDCUiawvFNpRNMefkvB5SvzRppRnodQp6k4IuKeh1CnpVev58KptszcKXAdo-_29EgSD5h03ccLlchQeXvhz8LP4OmZCWlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661272219</pqid></control><display><type>article</type><title>Lyapunov exponents of Green’s functions for random potentials tending to zero</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Kosygina, Elena ; Mountford, Thomas S. ; Zerner, Martin P. W.</creator><creatorcontrib>Kosygina, Elena ; Mountford, Thomas S. ; Zerner, Martin P. W.</creatorcontrib><description>We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +  γV , where the potentials , are i.i.d.  nonnegative random variables and γ &gt; 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like as γ tends to 0. Here the constant c is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-010-0266-y</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Annealing ; Chaos theory ; Economics ; Exact sciences and technology ; Finance ; General topics ; Green's functions ; Insurance ; Liapunov exponents ; Lyapunov exponents ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probabilistic methods ; Probability ; Probability and statistics ; Probability theory ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Quenching ; Quenching (cooling) ; Random variables ; Random walk theory ; Scalars ; Sciences and techniques of general use ; Statistics for Business ; Stochastic processes ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2011-06, Vol.150 (1-2), p.43-59</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010.</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</citedby><cites>FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2661272219/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2661272219?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,36059,44361,74665</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24207370$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosygina, Elena</creatorcontrib><creatorcontrib>Mountford, Thomas S.</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><title>Lyapunov exponents of Green’s functions for random potentials tending to zero</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +  γV , where the potentials , are i.i.d.  nonnegative random variables and γ &gt; 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like as γ tends to 0. Here the constant c is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.</description><subject>Annealing</subject><subject>Chaos theory</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>Finance</subject><subject>General topics</subject><subject>Green's functions</subject><subject>Insurance</subject><subject>Liapunov exponents</subject><subject>Lyapunov exponents</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Quenching</subject><subject>Quenching (cooling)</subject><subject>Random variables</subject><subject>Random walk theory</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Statistics for Business</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1KJDEUhYOMYI_6AO6CMrgqvblJVVJLEf-gwY37EFOJlHQnZVIl07PyNXw9n8S0LSMILkIuyXdPTu4h5IDBCQOQpxlACKiAlYVNU622yIwJjhVCI36RGTCpKgU12yG_c34EAOQCZ-R2vjLDFOIzdX-HGFwYM42eXiXnwtvLa6Z-CnbsYyhVTDSZ0MUlHeJYyN4sMi1F14cHOkb6z6W4R7Z9OXb7n_suubu8uDu_rua3VzfnZ_PKCqHGSll_70H4moOTKBrnbNd4I1vOEUSrEJhQyHjTsnusy49aY2XNOiO72iLwXXK8kR1SfJpcHvWyz9YtFia4OGWtFEgGrVyTh9_IxzilULxp1UjOeXmsQEc_QWWYDCUiawvFNpRNMefkvB5SvzRppRnodQp6k4IuKeh1CnpVev58KptszcKXAdo-_29EgSD5h03ccLlchQeXvhz8LP4OmZCWlw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Kosygina, Elena</creator><creator>Mountford, Thomas S.</creator><creator>Zerner, Martin P. W.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>0U~</scope><scope>1-H</scope><scope>L.0</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110601</creationdate><title>Lyapunov exponents of Green’s functions for random potentials tending to zero</title><author>Kosygina, Elena ; Mountford, Thomas S. ; Zerner, Martin P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annealing</topic><topic>Chaos theory</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>Finance</topic><topic>General topics</topic><topic>Green's functions</topic><topic>Insurance</topic><topic>Liapunov exponents</topic><topic>Lyapunov exponents</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Quenching</topic><topic>Quenching (cooling)</topic><topic>Random variables</topic><topic>Random walk theory</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Statistics for Business</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosygina, Elena</creatorcontrib><creatorcontrib>Mountford, Thomas S.</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Professional Standard</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosygina, Elena</au><au>Mountford, Thomas S.</au><au>Zerner, Martin P. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov exponents of Green’s functions for random potentials tending to zero</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>150</volume><issue>1-2</issue><spage>43</spage><epage>59</epage><pages>43-59</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We consider quenched and annealed Lyapunov exponents for the Green’s function of −Δ +  γV , where the potentials , are i.i.d.  nonnegative random variables and γ &gt; 0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like as γ tends to 0. Here the constant c is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-010-0266-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2011-06, Vol.150 (1-2), p.43-59
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_880710970
source ABI/INFORM Global (ProQuest); Springer Link; BSC - Ebsco (Business Source Ultimate)
subjects Annealing
Chaos theory
Economics
Exact sciences and technology
Finance
General topics
Green's functions
Insurance
Liapunov exponents
Lyapunov exponents
Management
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probabilistic methods
Probability
Probability and statistics
Probability theory
Probability Theory and Stochastic Processes
Quantitative Finance
Quenching
Quenching (cooling)
Random variables
Random walk theory
Scalars
Sciences and techniques of general use
Statistics for Business
Stochastic processes
Studies
Theoretical
title Lyapunov exponents of Green’s functions for random potentials tending to zero
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20exponents%20of%20Green%E2%80%99s%20functions%20for%20random%20potentials%20tending%20to%20zero&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Kosygina,%20Elena&rft.date=2011-06-01&rft.volume=150&rft.issue=1-2&rft.spage=43&rft.epage=59&rft.pages=43-59&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-010-0266-y&rft_dat=%3Cproquest_cross%3E2350299471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-8cfbf04f530e7246eecd6fa79332049820148213691b250269ac751da7d5c203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661272219&rft_id=info:pmid/&rfr_iscdi=true