Loading…

Differential expression of SNAP-25 family proteins in the mouse brain

Soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP)‐25 is a neuronal SNARE protein essential for neurotransmitter release from presynaptic terminals. Three palmitoylated SNAP‐25 family proteins: SNAP‐25a, SNAP‐25b, and SNAP‐23, are expressed in the brain, but little is known about th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative neurology (1911) 2011-04, Vol.519 (5), p.916-932
Main Authors: Yamamori, Saori, Itakura, Makoto, Sugaya, Daichi, Katsumata, Osamu, Sakagami, Hiroyuki, Takahashi, Masami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP)‐25 is a neuronal SNARE protein essential for neurotransmitter release from presynaptic terminals. Three palmitoylated SNAP‐25 family proteins: SNAP‐25a, SNAP‐25b, and SNAP‐23, are expressed in the brain, but little is known about their distributions and functions. In the present study, we generated specific antibodies to distinguish these three homologous proteins. Immunoblot and immunohistochemical analyses revealed that SNAP‐25b was distributed in synapse‐enriched regions throughout almost the entire brain, whereas SNAP‐25a and SNAP‐23 were expressed in relatively specific brain regions with partially complementary expression patterns. SNAP‐25a and SNAP‐25b, but not SNAP‐23, were also present in the axoplasm of nerve fibers. The intracellular localization was also different, and although SNAP‐25b and SNAP‐23 were found primarily in membrane and lipid raft‐enriched fractions of mouse brain homogenates, a substantial amount of SNAP‐25a was recovered in soluble fractions. In PC12 cells, SNAP‐25b was localized to the plasma membrane, but SNAP‐25a and SNAP‐23 were distributed throughout the cytoplasm. The expression and distribution of these three proteins were also differentially regulated in the early postnatal period. These results indicate that the three SNAP‐25 family proteins display a differential distribution in the brain as well as in neuronal cells, and possibly play distinct roles. J. Comp. Neurol. 519:916–932, 2011. © 2010 Wiley‐Liss, Inc.
ISSN:0021-9967
1096-9861
1096-9861
DOI:10.1002/cne.22558