Loading…
Ecological sensitivity: a biospheric view of climate change
Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO 2 (equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to...
Saved in:
Published in: | Climatic change 2011-08, Vol.107 (3-4), p.433-457 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO
2
(equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to investigate the potential degree of plant community changes over the next three centuries. We use ten climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, with climate sensitivities from 2–4°C. The concept of climate sensitivity depends upon the continuous nature of the temperature field across the Earth’s surface. For this research, the bridge between climate change and biospheric change predictions is provided by the Equilibrium Vegetation Ecology model (EVE), which simulates a continuous description of the Earth’s terrestrial plant communities as a function of climate. The ecosensitivity metrics applied to the results of EVE simulations at the end of the twenty-first century result in 49% of the Earth’s land surface area undergoing plant community changes and 37% of the world’s terrestrial ecosystems undergoing biome-scale changes. EVE is an equilibrium model, and, although rates of ecological change are not addressed, the resultant ecological sensitivity projections provide an estimate of the degree of species turnover that must occur for ecosystems to be in equilibrium with local climates. Regardless of equilibrium timescales, the new metrics highlight the Earth’s degree of ecological sensitivity while identifying ecological “hotspots” in the terrestrial biosphere’s response to projected climate changes over the next three centuries. |
---|---|
ISSN: | 0165-0009 1573-1480 |
DOI: | 10.1007/s10584-011-0065-1 |