Loading…
CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production
There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the...
Saved in:
Published in: | Bioresource technology 2010-09, Vol.101 (18), p.7005-7013 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503 |
---|---|
cites | |
container_end_page | 7013 |
container_issue | 18 |
container_start_page | 7005 |
container_title | Bioresource technology |
container_volume | 101 |
creator | Ding, Jie Wang, Xu Zhou, Xue-Fei Ren, Nan-Qi Guo, Wan-Qian |
description | There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70
rev/min is most suited for economical biohydrogen production. |
doi_str_mv | 10.1016/j.biortech.2010.03.146 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883025015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852410006693</els_id><sourcerecordid>883025015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS0EoiHwFcpeEOWwYWzH9voGSikgVUKizdny-k_rkKxT24vUfnq8Sgo3erBsjX7vzYwfQqcYFhgw_7hZ9CGm4sztgkAtAl3gJX-GZrgTtCVS8OdoBpJD2zGyPEGvct4AAMWCvEQnBJZEYCFmaL26OG_ivoRdeNAlxKGJvjFxKGEY45ibXEJKzrZFD7-as9XV9c8PTXLalJgaX0-d4vbepnjjhmafoh3NZPIavfB6m92b4z1H64sv16tv7eWPr99Xny9bwwkprfFEdCC4ZL0mROveOcEoNdJzqWl9E8Y9MG6WQoOV2Bppveil1s73PQM6R-8PvrX13ehyUbuQjdtu9eDq9KrrKBAGmD1JCkpxx3AVzNHZf8n6bUA6JvGE8gNqUsw5Oa_2Kex0ulcY1BST2qjHmNQUkwKqakxVeHrsMfY7Z__KHnOpwLsjoLPRW5_0YEL-xxGJKZeT0dsD53VU-iZVZn1VO1Go21AO0-KfDoSrOfwOLqlsghuMsyE5U5SN4alp_wBg0r0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770285918</pqid></control><display><type>article</type><title>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</title><source>ScienceDirect Freedom Collection</source><creator>Ding, Jie ; Wang, Xu ; Zhou, Xue-Fei ; Ren, Nan-Qi ; Guo, Wan-Qian</creator><creatorcontrib>Ding, Jie ; Wang, Xu ; Zhou, Xue-Fei ; Ren, Nan-Qi ; Guo, Wan-Qian</creatorcontrib><description>There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70
rev/min is most suited for economical biohydrogen production.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2010.03.146</identifier><identifier>PMID: 20427177</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bacterial Physiological Phenomena ; Biofuel production ; Biohydrogen production ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Computer Simulation ; Computer-Aided Design ; Continuous stirred-tank reactors (CSTR) ; Energy ; Equipment Design ; Equipment Failure Analysis ; Fluid flow ; Fundamental and applied biological sciences. Psychology ; Hydrodynamics ; Hydrogen - metabolism ; Impellers ; Industrial applications and implications. Economical aspects ; Mathematical models ; Models, Biological ; Optimization ; Reactor design ; Reactors ; Rheology - instrumentation</subject><ispartof>Bioresource technology, 2010-09, Vol.101 (18), p.7005-7013</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22913696$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20427177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhou, Xue-Fei</creatorcontrib><creatorcontrib>Ren, Nan-Qi</creatorcontrib><creatorcontrib>Guo, Wan-Qian</creatorcontrib><title>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70
rev/min is most suited for economical biohydrogen production.</description><subject>Bacterial Physiological Phenomena</subject><subject>Biofuel production</subject><subject>Biohydrogen production</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Continuous stirred-tank reactors (CSTR)</subject><subject>Energy</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fluid flow</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrodynamics</subject><subject>Hydrogen - metabolism</subject><subject>Impellers</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Reactor design</subject><subject>Reactors</subject><subject>Rheology - instrumentation</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxS0EoiHwFcpeEOWwYWzH9voGSikgVUKizdny-k_rkKxT24vUfnq8Sgo3erBsjX7vzYwfQqcYFhgw_7hZ9CGm4sztgkAtAl3gJX-GZrgTtCVS8OdoBpJD2zGyPEGvct4AAMWCvEQnBJZEYCFmaL26OG_ivoRdeNAlxKGJvjFxKGEY45ibXEJKzrZFD7-as9XV9c8PTXLalJgaX0-d4vbepnjjhmafoh3NZPIavfB6m92b4z1H64sv16tv7eWPr99Xny9bwwkprfFEdCC4ZL0mROveOcEoNdJzqWl9E8Y9MG6WQoOV2Bppveil1s73PQM6R-8PvrX13ehyUbuQjdtu9eDq9KrrKBAGmD1JCkpxx3AVzNHZf8n6bUA6JvGE8gNqUsw5Oa_2Kex0ulcY1BST2qjHmNQUkwKqakxVeHrsMfY7Z__KHnOpwLsjoLPRW5_0YEL-xxGJKZeT0dsD53VU-iZVZn1VO1Go21AO0-KfDoSrOfwOLqlsghuMsyE5U5SN4alp_wBg0r0M</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Ding, Jie</creator><creator>Wang, Xu</creator><creator>Zhou, Xue-Fei</creator><creator>Ren, Nan-Qi</creator><creator>Guo, Wan-Qian</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20100901</creationdate><title>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</title><author>Ding, Jie ; Wang, Xu ; Zhou, Xue-Fei ; Ren, Nan-Qi ; Guo, Wan-Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacterial Physiological Phenomena</topic><topic>Biofuel production</topic><topic>Biohydrogen production</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Continuous stirred-tank reactors (CSTR)</topic><topic>Energy</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fluid flow</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrodynamics</topic><topic>Hydrogen - metabolism</topic><topic>Impellers</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Reactor design</topic><topic>Reactors</topic><topic>Rheology - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhou, Xue-Fei</creatorcontrib><creatorcontrib>Ren, Nan-Qi</creatorcontrib><creatorcontrib>Guo, Wan-Qian</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jie</au><au>Wang, Xu</au><au>Zhou, Xue-Fei</au><au>Ren, Nan-Qi</au><au>Guo, Wan-Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>101</volume><issue>18</issue><spage>7005</spage><epage>7013</epage><pages>7005-7013</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70
rev/min is most suited for economical biohydrogen production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20427177</pmid><doi>10.1016/j.biortech.2010.03.146</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2010-09, Vol.101 (18), p.7005-7013 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_883025015 |
source | ScienceDirect Freedom Collection |
subjects | Bacterial Physiological Phenomena Biofuel production Biohydrogen production Biological and medical sciences Bioreactors - microbiology Biotechnology Computational fluid dynamics Computational fluid dynamics (CFD) Computer Simulation Computer-Aided Design Continuous stirred-tank reactors (CSTR) Energy Equipment Design Equipment Failure Analysis Fluid flow Fundamental and applied biological sciences. Psychology Hydrodynamics Hydrogen - metabolism Impellers Industrial applications and implications. Economical aspects Mathematical models Models, Biological Optimization Reactor design Reactors Rheology - instrumentation |
title | CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20optimization%20of%20continuous%20stirred-tank%20(CSTR)%20reactor%20for%20biohydrogen%20production&rft.jtitle=Bioresource%20technology&rft.au=Ding,%20Jie&rft.date=2010-09-01&rft.volume=101&rft.issue=18&rft.spage=7005&rft.epage=7013&rft.pages=7005-7013&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2010.03.146&rft_dat=%3Cproquest_cross%3E883025015%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770285918&rft_id=info:pmid/20427177&rfr_iscdi=true |