Loading…

CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production

There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2010-09, Vol.101 (18), p.7005-7013
Main Authors: Ding, Jie, Wang, Xu, Zhou, Xue-Fei, Ren, Nan-Qi, Guo, Wan-Qian
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503
cites
container_end_page 7013
container_issue 18
container_start_page 7005
container_title Bioresource technology
container_volume 101
creator Ding, Jie
Wang, Xu
Zhou, Xue-Fei
Ren, Nan-Qi
Guo, Wan-Qian
description There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.
doi_str_mv 10.1016/j.biortech.2010.03.146
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883025015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852410006693</els_id><sourcerecordid>883025015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS0EoiHwFcpeEOWwYWzH9voGSikgVUKizdny-k_rkKxT24vUfnq8Sgo3erBsjX7vzYwfQqcYFhgw_7hZ9CGm4sztgkAtAl3gJX-GZrgTtCVS8OdoBpJD2zGyPEGvct4AAMWCvEQnBJZEYCFmaL26OG_ivoRdeNAlxKGJvjFxKGEY45ibXEJKzrZFD7-as9XV9c8PTXLalJgaX0-d4vbepnjjhmafoh3NZPIavfB6m92b4z1H64sv16tv7eWPr99Xny9bwwkprfFEdCC4ZL0mROveOcEoNdJzqWl9E8Y9MG6WQoOV2Bppveil1s73PQM6R-8PvrX13ehyUbuQjdtu9eDq9KrrKBAGmD1JCkpxx3AVzNHZf8n6bUA6JvGE8gNqUsw5Oa_2Kex0ulcY1BST2qjHmNQUkwKqakxVeHrsMfY7Z__KHnOpwLsjoLPRW5_0YEL-xxGJKZeT0dsD53VU-iZVZn1VO1Go21AO0-KfDoSrOfwOLqlsghuMsyE5U5SN4alp_wBg0r0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770285918</pqid></control><display><type>article</type><title>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</title><source>ScienceDirect Freedom Collection</source><creator>Ding, Jie ; Wang, Xu ; Zhou, Xue-Fei ; Ren, Nan-Qi ; Guo, Wan-Qian</creator><creatorcontrib>Ding, Jie ; Wang, Xu ; Zhou, Xue-Fei ; Ren, Nan-Qi ; Guo, Wan-Qian</creatorcontrib><description>There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2010.03.146</identifier><identifier>PMID: 20427177</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bacterial Physiological Phenomena ; Biofuel production ; Biohydrogen production ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Computer Simulation ; Computer-Aided Design ; Continuous stirred-tank reactors (CSTR) ; Energy ; Equipment Design ; Equipment Failure Analysis ; Fluid flow ; Fundamental and applied biological sciences. Psychology ; Hydrodynamics ; Hydrogen - metabolism ; Impellers ; Industrial applications and implications. Economical aspects ; Mathematical models ; Models, Biological ; Optimization ; Reactor design ; Reactors ; Rheology - instrumentation</subject><ispartof>Bioresource technology, 2010-09, Vol.101 (18), p.7005-7013</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22913696$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20427177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhou, Xue-Fei</creatorcontrib><creatorcontrib>Ren, Nan-Qi</creatorcontrib><creatorcontrib>Guo, Wan-Qian</creatorcontrib><title>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.</description><subject>Bacterial Physiological Phenomena</subject><subject>Biofuel production</subject><subject>Biohydrogen production</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Continuous stirred-tank reactors (CSTR)</subject><subject>Energy</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fluid flow</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrodynamics</subject><subject>Hydrogen - metabolism</subject><subject>Impellers</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Reactor design</subject><subject>Reactors</subject><subject>Rheology - instrumentation</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxS0EoiHwFcpeEOWwYWzH9voGSikgVUKizdny-k_rkKxT24vUfnq8Sgo3erBsjX7vzYwfQqcYFhgw_7hZ9CGm4sztgkAtAl3gJX-GZrgTtCVS8OdoBpJD2zGyPEGvct4AAMWCvEQnBJZEYCFmaL26OG_ivoRdeNAlxKGJvjFxKGEY45ibXEJKzrZFD7-as9XV9c8PTXLalJgaX0-d4vbepnjjhmafoh3NZPIavfB6m92b4z1H64sv16tv7eWPr99Xny9bwwkprfFEdCC4ZL0mROveOcEoNdJzqWl9E8Y9MG6WQoOV2Bppveil1s73PQM6R-8PvrX13ehyUbuQjdtu9eDq9KrrKBAGmD1JCkpxx3AVzNHZf8n6bUA6JvGE8gNqUsw5Oa_2Kex0ulcY1BST2qjHmNQUkwKqakxVeHrsMfY7Z__KHnOpwLsjoLPRW5_0YEL-xxGJKZeT0dsD53VU-iZVZn1VO1Go21AO0-KfDoSrOfwOLqlsghuMsyE5U5SN4alp_wBg0r0M</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Ding, Jie</creator><creator>Wang, Xu</creator><creator>Zhou, Xue-Fei</creator><creator>Ren, Nan-Qi</creator><creator>Guo, Wan-Qian</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20100901</creationdate><title>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</title><author>Ding, Jie ; Wang, Xu ; Zhou, Xue-Fei ; Ren, Nan-Qi ; Guo, Wan-Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacterial Physiological Phenomena</topic><topic>Biofuel production</topic><topic>Biohydrogen production</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Continuous stirred-tank reactors (CSTR)</topic><topic>Energy</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fluid flow</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrodynamics</topic><topic>Hydrogen - metabolism</topic><topic>Impellers</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Reactor design</topic><topic>Reactors</topic><topic>Rheology - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhou, Xue-Fei</creatorcontrib><creatorcontrib>Ren, Nan-Qi</creatorcontrib><creatorcontrib>Guo, Wan-Qian</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jie</au><au>Wang, Xu</au><au>Zhou, Xue-Fei</au><au>Ren, Nan-Qi</au><au>Guo, Wan-Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>101</volume><issue>18</issue><spage>7005</spage><epage>7013</epage><pages>7005-7013</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas–liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20427177</pmid><doi>10.1016/j.biortech.2010.03.146</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2010-09, Vol.101 (18), p.7005-7013
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_883025015
source ScienceDirect Freedom Collection
subjects Bacterial Physiological Phenomena
Biofuel production
Biohydrogen production
Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Computational fluid dynamics
Computational fluid dynamics (CFD)
Computer Simulation
Computer-Aided Design
Continuous stirred-tank reactors (CSTR)
Energy
Equipment Design
Equipment Failure Analysis
Fluid flow
Fundamental and applied biological sciences. Psychology
Hydrodynamics
Hydrogen - metabolism
Impellers
Industrial applications and implications. Economical aspects
Mathematical models
Models, Biological
Optimization
Reactor design
Reactors
Rheology - instrumentation
title CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20optimization%20of%20continuous%20stirred-tank%20(CSTR)%20reactor%20for%20biohydrogen%20production&rft.jtitle=Bioresource%20technology&rft.au=Ding,%20Jie&rft.date=2010-09-01&rft.volume=101&rft.issue=18&rft.spage=7005&rft.epage=7013&rft.pages=7005-7013&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2010.03.146&rft_dat=%3Cproquest_cross%3E883025015%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-cf27807695ba22aabee7533c9f69a3e75256f056c47a0d91dc9df7b9aaefbb503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770285918&rft_id=info:pmid/20427177&rfr_iscdi=true