Loading…
Metric optimized gating for fetal cardiac MRI
Phase‐contrast magnetic resonance imaging can be used to complement echocardiography for the evaluation of the fetal heart. Cardiac imaging typically requires gating with peripheral hardware; however, a gating signal is not readily available in utero. No successful application of existing technologi...
Saved in:
Published in: | Magnetic resonance in medicine 2010-11, Vol.64 (5), p.1304-1314 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phase‐contrast magnetic resonance imaging can be used to complement echocardiography for the evaluation of the fetal heart. Cardiac imaging typically requires gating with peripheral hardware; however, a gating signal is not readily available in utero. No successful application of existing technologies to human fetal phase‐contrast magnetic resonance imaging has been reported to date in the literature. The purpose of this work is to develop a technique for phase‐contrast magnetic resonance imaging of the fetal heart that does not require measurement of a gating signal. Metric optimized gating involves acquiring data without gating and retrospectively determining the proper reconstruction by optimizing an image metric. The effects of incorrect gating on phase contrast images were investigated, and the time‐entropy of the series of images was found to provide a good measure of the level of corruption. The technique was validated with a pulsatile flow phantom, experiments with adult volunteers, and in vivo application in the fetal population. Images and flow curves from these measurements are presented. Additionally, numerical simulations were used to investigate the degree to which heart rate variability affects the reconstruction process. Metric optimized gating enables imaging with conventional phase‐contrast magnetic resonance imaging sequences in the absence of a gating signal, permitting flow measurements in the great vessels in utero. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0740-3194 1522-2594 1522-2594 |
DOI: | 10.1002/mrm.22542 |