Loading…

Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis

A great number of obsolete larval neurons in the Drosophila central nervous system are eliminated by developmentally programmed cell death (PCD) during early metamorphosis. To elucidate the mechanisms of neuronal PCD occurring during this period, we undertook genetic dissection of seven currently kn...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative neurology (1911) 2011-01, Vol.519 (1), p.34-48
Main Authors: Lee, Gyunghee, Wang, Zixing, Sehgal, Ritika, Chen, Chun-Hong, Kikuno, Keiko, Hay, Bruce, Park, Jae H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A great number of obsolete larval neurons in the Drosophila central nervous system are eliminated by developmentally programmed cell death (PCD) during early metamorphosis. To elucidate the mechanisms of neuronal PCD occurring during this period, we undertook genetic dissection of seven currently known Drosophila caspases in the PCD of a group of interneurons (vCrz) that produce corazonin (Crz) neuropeptide in the ventral nerve cord. The molecular death program in the vCrz neurons initiates within 1 hour after pupariation, as demonstrated by the cytological signs of cell death and caspase activation. PCD was significantly suppressed in dronc‐null mutants, but not in null mutants of either dredd or strica. A double mutation lacking both dronc and strica impaired PCD phenotype more severely than did a dronc mutation alone, but comparably to a triple dredd/strica/dronc mutation, indicating that dronc is a main initiator caspase, while strica plays a minor role that overlaps with dronc's. As for effector caspases, vCrz PCD requires both ice and dcp‐1 functions, as they work cooperatively for a timely removal of the vCrz neurons. Interestingly, the activation of the Ice and Dcp‐1 is not solely dependent on Dronc and Strica, implying an alternative pathway to activate the effectors. Two remaining effector caspase genes, decay and damm, found no apparent functions in the neuronal PCD, at least during early metamorphosis. Overall, our work revealed that vCrz PCD utilizes dronc, strica, dcp‐1, and ice wherein the activation of Ice and Dcp‐1 requires a novel pathway in addition to the initiator caspases. J. Comp. Neurol. 519:34‐48, 2011. © 2010 Wiley‐Liss, Inc.
ISSN:0021-9967
1096-9861
1096-9861
DOI:10.1002/cne.22498