Loading…

Surface modification of silk fibroin with poly(ethylene glycol) for antiadhesion and antithrombotic applications

Silk fibroin film surfaces were PEGylated by reaction with cyanuric chloride‐activated poly(ethylene glycol) (PEG). Reactions with different concentrations of activated PEG generated films with PEG graft densities from 0.02 to 0.4 mg per square cm of silk fibroin. Increased PEGylation resulted in in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A 2010-05, Vol.93A (2), p.595-606
Main Authors: Vepari, Charu, Matheson, Douglas, Drummy, Larry, Naik, Rajesh, Kaplan, David L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silk fibroin film surfaces were PEGylated by reaction with cyanuric chloride‐activated poly(ethylene glycol) (PEG). Reactions with different concentrations of activated PEG generated films with PEG graft densities from 0.02 to 0.4 mg per square cm of silk fibroin. Increased PEGylation resulted in increased hydrophilicity as analyzed by contact angle, and a smoother morphology based on scanning electron microscopy. Increased PEGylation decreased human IgG adsorption and decreased the attachment and proliferation of human fibroblasts over two weeks. Increased concentration of PEG on the silk fibroin surfaces also decreased the proliferation of human mesenchymal stem cells and inhibited human platelet attachment. Surface PEGylated silk fibroin films could be useful antiadhesion and antithrombotic materials for biomedical applications when considered along with the unique mechanical and tailorable degradation profiles of silk fibroin. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010
ISSN:1549-3296
1552-4965
1552-4965
DOI:10.1002/jbm.a.32565