Loading…
Melanization of flavonoids by fungal and bacterial laccases
Laccase activity in plants results in the formation of a number of brown pigments, often referred to as tannins. Laccase-dependent pigment production is also catalogued in numerous fungal and bacterial species. The laccase of the haploid yeast Cryptococcus neoformans forms melanin-like pigmentation...
Saved in:
Published in: | Yeast (Chichester, England) England), 2011-03, Vol.28 (3), p.181-188 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Laccase activity in plants results in the formation of a number of brown pigments, often referred to as tannins. Laccase-dependent pigment production is also catalogued in numerous fungal and bacterial species. The laccase of the haploid yeast Cryptococcus neoformans forms melanin-like pigmentation outside the cell wall in the presence of exogenous substrates. While this process is a contributing factor to its virulence in humans, the evolutionary intent for the laccase function remains a mystery. We show here that C. neoformans and Bacillus subtilis have the ability to create melanin-like pigments from a variety of flavonoid molecules across a range of conformations, preferring those with 3′,4′-dihydroxylations. Since flavonoids are ubiquitous plant molecules and often-considered antimicrobial agents, we postulate that they are the intended natural targets of laccase activity and result in the formation of a defensive melanin-like coat. These results suggests a new mechanism by which flavonoid-melanin formation may occur, using not only A- and C-ring linkages, but also monomer links through the B-ring of the flavonoid structure. We also show that resveratrol and other non- and mono-hydroxylated polyphenol substrates have the ability to restrict pigment formation and may be potent inhibitors of laccase activity. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0749-503X 1097-0061 1097-0061 |
DOI: | 10.1002/yea.1829 |