Loading…
Validation of a mobile phone-assisted microarray decoding platform for signal-enhanced mutation detection
We have established a mobile phone-assisted microarray decoding platform for signal-enhanced mutation detection. A large amount of single-stranded DNA (ssDNA) was obtained by combining symmetric PCR and magnetic isolation, and ssDNA prepared with magnetic bead as label was further allowed to hybridi...
Saved in:
Published in: | Biosensors & bioelectronics 2011-08, Vol.26 (12), p.4708-4714 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have established a mobile phone-assisted microarray decoding platform for signal-enhanced mutation detection. A large amount of single-stranded DNA (ssDNA) was obtained by combining symmetric PCR and magnetic isolation, and ssDNA prepared with magnetic bead as label was further allowed to hybridize against the tag-array for decoding purpose. High sensitivity and specificity was achieved with the detection of genomic DNA. When simultaneously genotyping nine common mutations associated with hereditary hearing loss, the detection limit of 1
ng genomic DNA was achieved. Significantly, a mobile phone was also used to record and decode the genotyping results through a custom-designed imaging adaptor and a dedicated mobile phone software. A total of 51 buccal swabs from patients probably with deafness-related mutations were collected and analyzed. The genotyping results were all confirmed by fluorescence-based laser confocal scanning and direct DNA sequencing. This mobile phone-assisted decoding platform provides an effective but economic mutation detection alternative for the future quicker and sensitive detection of virtually any mutation-related diseases in developing and underdeveloped countries. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2011.05.031 |