Loading…
Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver
Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The ac...
Saved in:
Published in: | Journal of biochemical and molecular toxicology 2011-03, Vol.25 (2), p.117-126 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3 |
container_end_page | 126 |
container_issue | 2 |
container_start_page | 117 |
container_title | Journal of biochemical and molecular toxicology |
container_volume | 25 |
creator | Constantin, Rodrigo Polimeni Constantin, Jorgete Pagadigorria, Clairce Luzia Salgueiro Ishii-Iwamoto, Emy Luiza Bracht, Adelar de Castro, Cristiane Vizioli Yamamoto, Nair Seiko |
description | Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367 |
doi_str_mv | 10.1002/jbt.20367 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883045181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883045181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</originalsourceid><addsrcrecordid>eNp1kMtOHDEQRa0oKBDIIj8QWcoCZdFQdo8fk11ADBPEawFKdpbbXZ140t0mtgeYv8dhgEUkVuVSnXtlHUI-MthjAHx_0eQ9DrVUb8gWg-m0golkbx_fopJSwSZ5n9ICAMRUiXdkk5eDkmq6Rc4uYwj3vrVjptZlf-vzioaOdj5h9uNXetR16HKiYaQ4Yvy1ogNm24Tep4H6kebfSKPNtPe3GHfIRmf7hB-e5ja5nh1dHc6r04vj74ffTis30VpVToNyrrXIy6qd4zVAY1sN2DLhGOdCorRCCc6YZlLICbhGM3RKIbPO1ttkd917E8PfJaZsBp8c9r0dMSyT0bqGiSjZQn7-j1yEZRzL50zNQNYCOOeF-rKmXAwpRezMTfSDjSvDwPxTbIpi86i4sJ-eGpfNgO0L-ey0APtr4M73uHq9yZwcXD1XVuuETxnvXxI2_jHlqoT5cX5sZvP5WdE1Mz_rB2Ickyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106350222</pqid></control><display><type>article</type><title>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</title><source>Wiley</source><creator>Constantin, Rodrigo Polimeni ; Constantin, Jorgete ; Pagadigorria, Clairce Luzia Salgueiro ; Ishii-Iwamoto, Emy Luiza ; Bracht, Adelar ; de Castro, Cristiane Vizioli ; Yamamoto, Nair Seiko</creator><creatorcontrib>Constantin, Rodrigo Polimeni ; Constantin, Jorgete ; Pagadigorria, Clairce Luzia Salgueiro ; Ishii-Iwamoto, Emy Luiza ; Bracht, Adelar ; de Castro, Cristiane Vizioli ; Yamamoto, Nair Seiko</creatorcontrib><description>Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367</description><identifier>ISSN: 1095-6670</identifier><identifier>ISSN: 1099-0461</identifier><identifier>EISSN: 1099-0461</identifier><identifier>DOI: 10.1002/jbt.20367</identifier><identifier>PMID: 20957679</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>3-Hydroxybutyric Acid - metabolism ; Acetoacetates - metabolism ; Adenosine diphosphate ; Animals ; Catechol ; Electron transport ; Energy Metabolism ; Energy transduction ; Fisetin ; Flavonoids - pharmacology ; Flavonols ; Hepatocytes ; Ketogenesis ; Ketoglutaric Acids - metabolism ; Liver ; Liver - metabolism ; Male ; Mammalian cells ; Metabolism ; Mitochondria ; Mitochondria, Liver - drug effects ; Mitochondria, Liver - metabolism ; Na+/K+-exchanging ATPase ; NAD - metabolism ; NADH ; NADH oxidation ; Nicotinamide adenine dinucleotide ; Oxidation-Reduction - drug effects ; Oxygen Consumption - drug effects ; Prooxidant Activity ; Quercetin ; Quercetin - pharmacology ; Quinones ; Rats ; Rats, Wistar ; Redox potential ; Substrate inhibition</subject><ispartof>Journal of biochemical and molecular toxicology, 2011-03, Vol.25 (2), p.117-126</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar/Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</citedby><cites>FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20957679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantin, Rodrigo Polimeni</creatorcontrib><creatorcontrib>Constantin, Jorgete</creatorcontrib><creatorcontrib>Pagadigorria, Clairce Luzia Salgueiro</creatorcontrib><creatorcontrib>Ishii-Iwamoto, Emy Luiza</creatorcontrib><creatorcontrib>Bracht, Adelar</creatorcontrib><creatorcontrib>de Castro, Cristiane Vizioli</creatorcontrib><creatorcontrib>Yamamoto, Nair Seiko</creatorcontrib><title>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</title><title>Journal of biochemical and molecular toxicology</title><addtitle>J. Biochem. Mol. Toxicol</addtitle><description>Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367</description><subject>3-Hydroxybutyric Acid - metabolism</subject><subject>Acetoacetates - metabolism</subject><subject>Adenosine diphosphate</subject><subject>Animals</subject><subject>Catechol</subject><subject>Electron transport</subject><subject>Energy Metabolism</subject><subject>Energy transduction</subject><subject>Fisetin</subject><subject>Flavonoids - pharmacology</subject><subject>Flavonols</subject><subject>Hepatocytes</subject><subject>Ketogenesis</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mammalian cells</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - drug effects</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Na+/K+-exchanging ATPase</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>NADH oxidation</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxygen Consumption - drug effects</subject><subject>Prooxidant Activity</subject><subject>Quercetin</subject><subject>Quercetin - pharmacology</subject><subject>Quinones</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Redox potential</subject><subject>Substrate inhibition</subject><issn>1095-6670</issn><issn>1099-0461</issn><issn>1099-0461</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOHDEQRa0oKBDIIj8QWcoCZdFQdo8fk11ADBPEawFKdpbbXZ140t0mtgeYv8dhgEUkVuVSnXtlHUI-MthjAHx_0eQ9DrVUb8gWg-m0golkbx_fopJSwSZ5n9ICAMRUiXdkk5eDkmq6Rc4uYwj3vrVjptZlf-vzioaOdj5h9uNXetR16HKiYaQ4Yvy1ogNm24Tep4H6kebfSKPNtPe3GHfIRmf7hB-e5ja5nh1dHc6r04vj74ffTis30VpVToNyrrXIy6qd4zVAY1sN2DLhGOdCorRCCc6YZlLICbhGM3RKIbPO1ttkd917E8PfJaZsBp8c9r0dMSyT0bqGiSjZQn7-j1yEZRzL50zNQNYCOOeF-rKmXAwpRezMTfSDjSvDwPxTbIpi86i4sJ-eGpfNgO0L-ey0APtr4M73uHq9yZwcXD1XVuuETxnvXxI2_jHlqoT5cX5sZvP5WdE1Mz_rB2Ickyk</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Constantin, Rodrigo Polimeni</creator><creator>Constantin, Jorgete</creator><creator>Pagadigorria, Clairce Luzia Salgueiro</creator><creator>Ishii-Iwamoto, Emy Luiza</creator><creator>Bracht, Adelar</creator><creator>de Castro, Cristiane Vizioli</creator><creator>Yamamoto, Nair Seiko</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>201103</creationdate><title>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</title><author>Constantin, Rodrigo Polimeni ; Constantin, Jorgete ; Pagadigorria, Clairce Luzia Salgueiro ; Ishii-Iwamoto, Emy Luiza ; Bracht, Adelar ; de Castro, Cristiane Vizioli ; Yamamoto, Nair Seiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>3-Hydroxybutyric Acid - metabolism</topic><topic>Acetoacetates - metabolism</topic><topic>Adenosine diphosphate</topic><topic>Animals</topic><topic>Catechol</topic><topic>Electron transport</topic><topic>Energy Metabolism</topic><topic>Energy transduction</topic><topic>Fisetin</topic><topic>Flavonoids - pharmacology</topic><topic>Flavonols</topic><topic>Hepatocytes</topic><topic>Ketogenesis</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mammalian cells</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - drug effects</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Na+/K+-exchanging ATPase</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>NADH oxidation</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxygen Consumption - drug effects</topic><topic>Prooxidant Activity</topic><topic>Quercetin</topic><topic>Quercetin - pharmacology</topic><topic>Quinones</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Redox potential</topic><topic>Substrate inhibition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Rodrigo Polimeni</creatorcontrib><creatorcontrib>Constantin, Jorgete</creatorcontrib><creatorcontrib>Pagadigorria, Clairce Luzia Salgueiro</creatorcontrib><creatorcontrib>Ishii-Iwamoto, Emy Luiza</creatorcontrib><creatorcontrib>Bracht, Adelar</creatorcontrib><creatorcontrib>de Castro, Cristiane Vizioli</creatorcontrib><creatorcontrib>Yamamoto, Nair Seiko</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of biochemical and molecular toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Rodrigo Polimeni</au><au>Constantin, Jorgete</au><au>Pagadigorria, Clairce Luzia Salgueiro</au><au>Ishii-Iwamoto, Emy Luiza</au><au>Bracht, Adelar</au><au>de Castro, Cristiane Vizioli</au><au>Yamamoto, Nair Seiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</atitle><jtitle>Journal of biochemical and molecular toxicology</jtitle><addtitle>J. Biochem. Mol. Toxicol</addtitle><date>2011-03</date><risdate>2011</risdate><volume>25</volume><issue>2</issue><spage>117</spage><epage>126</epage><pages>117-126</pages><issn>1095-6670</issn><issn>1099-0461</issn><eissn>1099-0461</eissn><abstract>Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20957679</pmid><doi>10.1002/jbt.20367</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-6670 |
ispartof | Journal of biochemical and molecular toxicology, 2011-03, Vol.25 (2), p.117-126 |
issn | 1095-6670 1099-0461 1099-0461 |
language | eng |
recordid | cdi_proquest_miscellaneous_883045181 |
source | Wiley |
subjects | 3-Hydroxybutyric Acid - metabolism Acetoacetates - metabolism Adenosine diphosphate Animals Catechol Electron transport Energy Metabolism Energy transduction Fisetin Flavonoids - pharmacology Flavonols Hepatocytes Ketogenesis Ketoglutaric Acids - metabolism Liver Liver - metabolism Male Mammalian cells Metabolism Mitochondria Mitochondria, Liver - drug effects Mitochondria, Liver - metabolism Na+/K+-exchanging ATPase NAD - metabolism NADH NADH oxidation Nicotinamide adenine dinucleotide Oxidation-Reduction - drug effects Oxygen Consumption - drug effects Prooxidant Activity Quercetin Quercetin - pharmacology Quinones Rats Rats, Wistar Redox potential Substrate inhibition |
title | Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prooxidant%20activity%20of%20fisetin:%20Effects%20on%20energy%20metabolism%20in%20the%20rat%20liver&rft.jtitle=Journal%20of%20biochemical%20and%20molecular%20toxicology&rft.au=Constantin,%20Rodrigo%20Polimeni&rft.date=2011-03&rft.volume=25&rft.issue=2&rft.spage=117&rft.epage=126&rft.pages=117-126&rft.issn=1095-6670&rft.eissn=1099-0461&rft_id=info:doi/10.1002/jbt.20367&rft_dat=%3Cproquest_cross%3E883045181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106350222&rft_id=info:pmid/20957679&rfr_iscdi=true |