Loading…

Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver

Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The ac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biochemical and molecular toxicology 2011-03, Vol.25 (2), p.117-126
Main Authors: Constantin, Rodrigo Polimeni, Constantin, Jorgete, Pagadigorria, Clairce Luzia Salgueiro, Ishii-Iwamoto, Emy Luiza, Bracht, Adelar, de Castro, Cristiane Vizioli, Yamamoto, Nair Seiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3
cites cdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3
container_end_page 126
container_issue 2
container_start_page 117
container_title Journal of biochemical and molecular toxicology
container_volume 25
creator Constantin, Rodrigo Polimeni
Constantin, Jorgete
Pagadigorria, Clairce Luzia Salgueiro
Ishii-Iwamoto, Emy Luiza
Bracht, Adelar
de Castro, Cristiane Vizioli
Yamamoto, Nair Seiko
description Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367
doi_str_mv 10.1002/jbt.20367
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883045181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883045181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</originalsourceid><addsrcrecordid>eNp1kMtOHDEQRa0oKBDIIj8QWcoCZdFQdo8fk11ADBPEawFKdpbbXZ140t0mtgeYv8dhgEUkVuVSnXtlHUI-MthjAHx_0eQ9DrVUb8gWg-m0golkbx_fopJSwSZ5n9ICAMRUiXdkk5eDkmq6Rc4uYwj3vrVjptZlf-vzioaOdj5h9uNXetR16HKiYaQ4Yvy1ogNm24Tep4H6kebfSKPNtPe3GHfIRmf7hB-e5ja5nh1dHc6r04vj74ffTis30VpVToNyrrXIy6qd4zVAY1sN2DLhGOdCorRCCc6YZlLICbhGM3RKIbPO1ttkd917E8PfJaZsBp8c9r0dMSyT0bqGiSjZQn7-j1yEZRzL50zNQNYCOOeF-rKmXAwpRezMTfSDjSvDwPxTbIpi86i4sJ-eGpfNgO0L-ey0APtr4M73uHq9yZwcXD1XVuuETxnvXxI2_jHlqoT5cX5sZvP5WdE1Mz_rB2Ickyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106350222</pqid></control><display><type>article</type><title>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</title><source>Wiley</source><creator>Constantin, Rodrigo Polimeni ; Constantin, Jorgete ; Pagadigorria, Clairce Luzia Salgueiro ; Ishii-Iwamoto, Emy Luiza ; Bracht, Adelar ; de Castro, Cristiane Vizioli ; Yamamoto, Nair Seiko</creator><creatorcontrib>Constantin, Rodrigo Polimeni ; Constantin, Jorgete ; Pagadigorria, Clairce Luzia Salgueiro ; Ishii-Iwamoto, Emy Luiza ; Bracht, Adelar ; de Castro, Cristiane Vizioli ; Yamamoto, Nair Seiko</creatorcontrib><description>Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367</description><identifier>ISSN: 1095-6670</identifier><identifier>ISSN: 1099-0461</identifier><identifier>EISSN: 1099-0461</identifier><identifier>DOI: 10.1002/jbt.20367</identifier><identifier>PMID: 20957679</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>3-Hydroxybutyric Acid - metabolism ; Acetoacetates - metabolism ; Adenosine diphosphate ; Animals ; Catechol ; Electron transport ; Energy Metabolism ; Energy transduction ; Fisetin ; Flavonoids - pharmacology ; Flavonols ; Hepatocytes ; Ketogenesis ; Ketoglutaric Acids - metabolism ; Liver ; Liver - metabolism ; Male ; Mammalian cells ; Metabolism ; Mitochondria ; Mitochondria, Liver - drug effects ; Mitochondria, Liver - metabolism ; Na+/K+-exchanging ATPase ; NAD - metabolism ; NADH ; NADH oxidation ; Nicotinamide adenine dinucleotide ; Oxidation-Reduction - drug effects ; Oxygen Consumption - drug effects ; Prooxidant Activity ; Quercetin ; Quercetin - pharmacology ; Quinones ; Rats ; Rats, Wistar ; Redox potential ; Substrate inhibition</subject><ispartof>Journal of biochemical and molecular toxicology, 2011-03, Vol.25 (2), p.117-126</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar/Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</citedby><cites>FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20957679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantin, Rodrigo Polimeni</creatorcontrib><creatorcontrib>Constantin, Jorgete</creatorcontrib><creatorcontrib>Pagadigorria, Clairce Luzia Salgueiro</creatorcontrib><creatorcontrib>Ishii-Iwamoto, Emy Luiza</creatorcontrib><creatorcontrib>Bracht, Adelar</creatorcontrib><creatorcontrib>de Castro, Cristiane Vizioli</creatorcontrib><creatorcontrib>Yamamoto, Nair Seiko</creatorcontrib><title>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</title><title>Journal of biochemical and molecular toxicology</title><addtitle>J. Biochem. Mol. Toxicol</addtitle><description>Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367</description><subject>3-Hydroxybutyric Acid - metabolism</subject><subject>Acetoacetates - metabolism</subject><subject>Adenosine diphosphate</subject><subject>Animals</subject><subject>Catechol</subject><subject>Electron transport</subject><subject>Energy Metabolism</subject><subject>Energy transduction</subject><subject>Fisetin</subject><subject>Flavonoids - pharmacology</subject><subject>Flavonols</subject><subject>Hepatocytes</subject><subject>Ketogenesis</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mammalian cells</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - drug effects</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Na+/K+-exchanging ATPase</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>NADH oxidation</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxygen Consumption - drug effects</subject><subject>Prooxidant Activity</subject><subject>Quercetin</subject><subject>Quercetin - pharmacology</subject><subject>Quinones</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Redox potential</subject><subject>Substrate inhibition</subject><issn>1095-6670</issn><issn>1099-0461</issn><issn>1099-0461</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOHDEQRa0oKBDIIj8QWcoCZdFQdo8fk11ADBPEawFKdpbbXZ140t0mtgeYv8dhgEUkVuVSnXtlHUI-MthjAHx_0eQ9DrVUb8gWg-m0golkbx_fopJSwSZ5n9ICAMRUiXdkk5eDkmq6Rc4uYwj3vrVjptZlf-vzioaOdj5h9uNXetR16HKiYaQ4Yvy1ogNm24Tep4H6kebfSKPNtPe3GHfIRmf7hB-e5ja5nh1dHc6r04vj74ffTis30VpVToNyrrXIy6qd4zVAY1sN2DLhGOdCorRCCc6YZlLICbhGM3RKIbPO1ttkd917E8PfJaZsBp8c9r0dMSyT0bqGiSjZQn7-j1yEZRzL50zNQNYCOOeF-rKmXAwpRezMTfSDjSvDwPxTbIpi86i4sJ-eGpfNgO0L-ey0APtr4M73uHq9yZwcXD1XVuuETxnvXxI2_jHlqoT5cX5sZvP5WdE1Mz_rB2Ickyk</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Constantin, Rodrigo Polimeni</creator><creator>Constantin, Jorgete</creator><creator>Pagadigorria, Clairce Luzia Salgueiro</creator><creator>Ishii-Iwamoto, Emy Luiza</creator><creator>Bracht, Adelar</creator><creator>de Castro, Cristiane Vizioli</creator><creator>Yamamoto, Nair Seiko</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>201103</creationdate><title>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</title><author>Constantin, Rodrigo Polimeni ; Constantin, Jorgete ; Pagadigorria, Clairce Luzia Salgueiro ; Ishii-Iwamoto, Emy Luiza ; Bracht, Adelar ; de Castro, Cristiane Vizioli ; Yamamoto, Nair Seiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>3-Hydroxybutyric Acid - metabolism</topic><topic>Acetoacetates - metabolism</topic><topic>Adenosine diphosphate</topic><topic>Animals</topic><topic>Catechol</topic><topic>Electron transport</topic><topic>Energy Metabolism</topic><topic>Energy transduction</topic><topic>Fisetin</topic><topic>Flavonoids - pharmacology</topic><topic>Flavonols</topic><topic>Hepatocytes</topic><topic>Ketogenesis</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mammalian cells</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - drug effects</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Na+/K+-exchanging ATPase</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>NADH oxidation</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxygen Consumption - drug effects</topic><topic>Prooxidant Activity</topic><topic>Quercetin</topic><topic>Quercetin - pharmacology</topic><topic>Quinones</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Redox potential</topic><topic>Substrate inhibition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Rodrigo Polimeni</creatorcontrib><creatorcontrib>Constantin, Jorgete</creatorcontrib><creatorcontrib>Pagadigorria, Clairce Luzia Salgueiro</creatorcontrib><creatorcontrib>Ishii-Iwamoto, Emy Luiza</creatorcontrib><creatorcontrib>Bracht, Adelar</creatorcontrib><creatorcontrib>de Castro, Cristiane Vizioli</creatorcontrib><creatorcontrib>Yamamoto, Nair Seiko</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of biochemical and molecular toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Rodrigo Polimeni</au><au>Constantin, Jorgete</au><au>Pagadigorria, Clairce Luzia Salgueiro</au><au>Ishii-Iwamoto, Emy Luiza</au><au>Bracht, Adelar</au><au>de Castro, Cristiane Vizioli</au><au>Yamamoto, Nair Seiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver</atitle><jtitle>Journal of biochemical and molecular toxicology</jtitle><addtitle>J. Biochem. Mol. Toxicol</addtitle><date>2011-03</date><risdate>2011</risdate><volume>25</volume><issue>2</issue><spage>117</spage><epage>126</epage><pages>117-126</pages><issn>1095-6670</issn><issn>1099-0461</issn><eissn>1099-0461</eissn><abstract>Flavonols, which possess the B‐catechol ring, as quercetin, are capable of producing o‐hemi‐ quinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α‐ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP‐synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH‐oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β‐hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of 14CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:117–126, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/jbt.20367</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20957679</pmid><doi>10.1002/jbt.20367</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1095-6670
ispartof Journal of biochemical and molecular toxicology, 2011-03, Vol.25 (2), p.117-126
issn 1095-6670
1099-0461
1099-0461
language eng
recordid cdi_proquest_miscellaneous_883045181
source Wiley
subjects 3-Hydroxybutyric Acid - metabolism
Acetoacetates - metabolism
Adenosine diphosphate
Animals
Catechol
Electron transport
Energy Metabolism
Energy transduction
Fisetin
Flavonoids - pharmacology
Flavonols
Hepatocytes
Ketogenesis
Ketoglutaric Acids - metabolism
Liver
Liver - metabolism
Male
Mammalian cells
Metabolism
Mitochondria
Mitochondria, Liver - drug effects
Mitochondria, Liver - metabolism
Na+/K+-exchanging ATPase
NAD - metabolism
NADH
NADH oxidation
Nicotinamide adenine dinucleotide
Oxidation-Reduction - drug effects
Oxygen Consumption - drug effects
Prooxidant Activity
Quercetin
Quercetin - pharmacology
Quinones
Rats
Rats, Wistar
Redox potential
Substrate inhibition
title Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prooxidant%20activity%20of%20fisetin:%20Effects%20on%20energy%20metabolism%20in%20the%20rat%20liver&rft.jtitle=Journal%20of%20biochemical%20and%20molecular%20toxicology&rft.au=Constantin,%20Rodrigo%20Polimeni&rft.date=2011-03&rft.volume=25&rft.issue=2&rft.spage=117&rft.epage=126&rft.pages=117-126&rft.issn=1095-6670&rft.eissn=1099-0461&rft_id=info:doi/10.1002/jbt.20367&rft_dat=%3Cproquest_cross%3E883045181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4887-c807ccdae24888cc2300bad80ed15c12256e6a5752118165640cb81ec77e1aca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106350222&rft_id=info:pmid/20957679&rfr_iscdi=true