Loading…

The influence of substrate creep on mesenchymal stem cell behaviour and phenotype

Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), negl...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2011-09, Vol.32 (26), p.5979-5993
Main Authors: Cameron, Andrew. R, Frith, Jessica. E, Cooper-White, Justin. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953
cites cdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953
container_end_page 5993
container_issue 26
container_start_page 5979
container_title Biomaterials
container_volume 32
creator Cameron, Andrew. R
Frith, Jessica. E
Cooper-White, Justin. J
description Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.
doi_str_mv 10.1016/j.biomaterials.2011.04.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883046375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961211003851</els_id><sourcerecordid>883046375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</originalsourceid><addsrcrecordid>eNqNks1q3DAUhUVpaaZpXqGIbrqyqyvJltVFoST9g0AJTdZClq8ZTW3LlezAvH1kJi2lq6yE0DnnHj5dQt4CK4FB_f5Qtj6MdsHo7ZBKzgBKJkvGxDOyg0Y1RaVZ9ZzsGEhe6Br4GXmV0oHlO5P8JTnjUHNoRLMjN7d7pH7qhxUnhzT0NK1tWmJOpy4izjRMdMSUX_fH0Q40LThSh8NAW9zbex_WSO3U0XmPU1iOM74mL_pcCy8ez3Ny9-Xz7eW34vrH1--Xn64LJ-t6KQS2FWqQUqDrKuTKaaW004Adc7xVXDvJWshFRds45fped7VVzElEbnUlzsm7U-4cw-8V02JGn7ZidsKwJtM0gslaqCcoVcUqpWFTfjgpXQwpRezNHP1o49EAMxt7czD_sjcbe8Okyeyz-c3jmLUdsftr_QM7C65OAsxY7j1Gk5zfsHc-oltMF_zT5nz8L8YNfvLODr_wiOmQf2TaPGASN8z83LZgWwKA7G4qEA_W6rGr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875057915</pqid></control><display><type>article</type><title>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Cameron, Andrew. R ; Frith, Jessica. E ; Cooper-White, Justin. J</creator><creatorcontrib>Cameron, Andrew. R ; Frith, Jessica. E ; Cooper-White, Justin. J</creatorcontrib><description>Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.04.003</identifier><identifier>PMID: 21621838</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Biocompatible Materials - pharmacology ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cells, Cultured ; Creep ; Dentistry ; Elastic Modulus ; Elasticity ; Humans ; Mechanical properties ; Mesenchymal stem cell ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - metabolism ; Polymerase Chain Reaction ; Tension ; Viscoelasticity ; Viscosity</subject><ispartof>Biomaterials, 2011-09, Vol.32 (26), p.5979-5993</ispartof><rights>2011</rights><rights>Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</citedby><cites>FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21621838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cameron, Andrew. R</creatorcontrib><creatorcontrib>Frith, Jessica. E</creatorcontrib><creatorcontrib>Cooper-White, Justin. J</creatorcontrib><title>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.</description><subject>Advanced Basic Science</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Creep</subject><subject>Dentistry</subject><subject>Elastic Modulus</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Mesenchymal stem cell</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Polymerase Chain Reaction</subject><subject>Tension</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNks1q3DAUhUVpaaZpXqGIbrqyqyvJltVFoST9g0AJTdZClq8ZTW3LlezAvH1kJi2lq6yE0DnnHj5dQt4CK4FB_f5Qtj6MdsHo7ZBKzgBKJkvGxDOyg0Y1RaVZ9ZzsGEhe6Br4GXmV0oHlO5P8JTnjUHNoRLMjN7d7pH7qhxUnhzT0NK1tWmJOpy4izjRMdMSUX_fH0Q40LThSh8NAW9zbex_WSO3U0XmPU1iOM74mL_pcCy8ez3Ny9-Xz7eW34vrH1--Xn64LJ-t6KQS2FWqQUqDrKuTKaaW004Adc7xVXDvJWshFRds45fped7VVzElEbnUlzsm7U-4cw-8V02JGn7ZidsKwJtM0gslaqCcoVcUqpWFTfjgpXQwpRezNHP1o49EAMxt7czD_sjcbe8Okyeyz-c3jmLUdsftr_QM7C65OAsxY7j1Gk5zfsHc-oltMF_zT5nz8L8YNfvLODr_wiOmQf2TaPGASN8z83LZgWwKA7G4qEA_W6rGr</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Cameron, Andrew. R</creator><creator>Frith, Jessica. E</creator><creator>Cooper-White, Justin. J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110901</creationdate><title>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</title><author>Cameron, Andrew. R ; Frith, Jessica. E ; Cooper-White, Justin. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Creep</topic><topic>Dentistry</topic><topic>Elastic Modulus</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Mesenchymal stem cell</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Polymerase Chain Reaction</topic><topic>Tension</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cameron, Andrew. R</creatorcontrib><creatorcontrib>Frith, Jessica. E</creatorcontrib><creatorcontrib>Cooper-White, Justin. J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cameron, Andrew. R</au><au>Frith, Jessica. E</au><au>Cooper-White, Justin. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>32</volume><issue>26</issue><spage>5979</spage><epage>5993</epage><pages>5979-5993</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21621838</pmid><doi>10.1016/j.biomaterials.2011.04.003</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-09, Vol.32 (26), p.5979-5993
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_883046375
source ScienceDirect Freedom Collection 2022-2024
subjects Advanced Basic Science
Biocompatible Materials - pharmacology
Cell Differentiation - drug effects
Cell Proliferation - drug effects
Cells, Cultured
Creep
Dentistry
Elastic Modulus
Elasticity
Humans
Mechanical properties
Mesenchymal stem cell
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - metabolism
Polymerase Chain Reaction
Tension
Viscoelasticity
Viscosity
title The influence of substrate creep on mesenchymal stem cell behaviour and phenotype
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20substrate%20creep%20on%20mesenchymal%20stem%20cell%20behaviour%20and%20phenotype&rft.jtitle=Biomaterials&rft.au=Cameron,%20Andrew.%20R&rft.date=2011-09-01&rft.volume=32&rft.issue=26&rft.spage=5979&rft.epage=5993&rft.pages=5979-5993&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.04.003&rft_dat=%3Cproquest_cross%3E883046375%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875057915&rft_id=info:pmid/21621838&rfr_iscdi=true