Loading…
The influence of substrate creep on mesenchymal stem cell behaviour and phenotype
Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), negl...
Saved in:
Published in: | Biomaterials 2011-09, Vol.32 (26), p.5979-5993 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953 |
container_end_page | 5993 |
container_issue | 26 |
container_start_page | 5979 |
container_title | Biomaterials |
container_volume | 32 |
creator | Cameron, Andrew. R Frith, Jessica. E Cooper-White, Justin. J |
description | Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types. |
doi_str_mv | 10.1016/j.biomaterials.2011.04.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883046375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961211003851</els_id><sourcerecordid>883046375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</originalsourceid><addsrcrecordid>eNqNks1q3DAUhUVpaaZpXqGIbrqyqyvJltVFoST9g0AJTdZClq8ZTW3LlezAvH1kJi2lq6yE0DnnHj5dQt4CK4FB_f5Qtj6MdsHo7ZBKzgBKJkvGxDOyg0Y1RaVZ9ZzsGEhe6Br4GXmV0oHlO5P8JTnjUHNoRLMjN7d7pH7qhxUnhzT0NK1tWmJOpy4izjRMdMSUX_fH0Q40LThSh8NAW9zbex_WSO3U0XmPU1iOM74mL_pcCy8ez3Ny9-Xz7eW34vrH1--Xn64LJ-t6KQS2FWqQUqDrKuTKaaW004Adc7xVXDvJWshFRds45fped7VVzElEbnUlzsm7U-4cw-8V02JGn7ZidsKwJtM0gslaqCcoVcUqpWFTfjgpXQwpRezNHP1o49EAMxt7czD_sjcbe8Okyeyz-c3jmLUdsftr_QM7C65OAsxY7j1Gk5zfsHc-oltMF_zT5nz8L8YNfvLODr_wiOmQf2TaPGASN8z83LZgWwKA7G4qEA_W6rGr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875057915</pqid></control><display><type>article</type><title>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Cameron, Andrew. R ; Frith, Jessica. E ; Cooper-White, Justin. J</creator><creatorcontrib>Cameron, Andrew. R ; Frith, Jessica. E ; Cooper-White, Justin. J</creatorcontrib><description>Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.04.003</identifier><identifier>PMID: 21621838</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Biocompatible Materials - pharmacology ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cells, Cultured ; Creep ; Dentistry ; Elastic Modulus ; Elasticity ; Humans ; Mechanical properties ; Mesenchymal stem cell ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - metabolism ; Polymerase Chain Reaction ; Tension ; Viscoelasticity ; Viscosity</subject><ispartof>Biomaterials, 2011-09, Vol.32 (26), p.5979-5993</ispartof><rights>2011</rights><rights>Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</citedby><cites>FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21621838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cameron, Andrew. R</creatorcontrib><creatorcontrib>Frith, Jessica. E</creatorcontrib><creatorcontrib>Cooper-White, Justin. J</creatorcontrib><title>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.</description><subject>Advanced Basic Science</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Creep</subject><subject>Dentistry</subject><subject>Elastic Modulus</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Mesenchymal stem cell</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Polymerase Chain Reaction</subject><subject>Tension</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNks1q3DAUhUVpaaZpXqGIbrqyqyvJltVFoST9g0AJTdZClq8ZTW3LlezAvH1kJi2lq6yE0DnnHj5dQt4CK4FB_f5Qtj6MdsHo7ZBKzgBKJkvGxDOyg0Y1RaVZ9ZzsGEhe6Br4GXmV0oHlO5P8JTnjUHNoRLMjN7d7pH7qhxUnhzT0NK1tWmJOpy4izjRMdMSUX_fH0Q40LThSh8NAW9zbex_WSO3U0XmPU1iOM74mL_pcCy8ez3Ny9-Xz7eW34vrH1--Xn64LJ-t6KQS2FWqQUqDrKuTKaaW004Adc7xVXDvJWshFRds45fped7VVzElEbnUlzsm7U-4cw-8V02JGn7ZidsKwJtM0gslaqCcoVcUqpWFTfjgpXQwpRezNHP1o49EAMxt7czD_sjcbe8Okyeyz-c3jmLUdsftr_QM7C65OAsxY7j1Gk5zfsHc-oltMF_zT5nz8L8YNfvLODr_wiOmQf2TaPGASN8z83LZgWwKA7G4qEA_W6rGr</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Cameron, Andrew. R</creator><creator>Frith, Jessica. E</creator><creator>Cooper-White, Justin. J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110901</creationdate><title>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</title><author>Cameron, Andrew. R ; Frith, Jessica. E ; Cooper-White, Justin. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Creep</topic><topic>Dentistry</topic><topic>Elastic Modulus</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Mesenchymal stem cell</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Polymerase Chain Reaction</topic><topic>Tension</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cameron, Andrew. R</creatorcontrib><creatorcontrib>Frith, Jessica. E</creatorcontrib><creatorcontrib>Cooper-White, Justin. J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cameron, Andrew. R</au><au>Frith, Jessica. E</au><au>Cooper-White, Justin. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of substrate creep on mesenchymal stem cell behaviour and phenotype</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>32</volume><issue>26</issue><spage>5979</spage><epage>5993</epage><pages>5979-5993</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21621838</pmid><doi>10.1016/j.biomaterials.2011.04.003</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2011-09, Vol.32 (26), p.5979-5993 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_883046375 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Advanced Basic Science Biocompatible Materials - pharmacology Cell Differentiation - drug effects Cell Proliferation - drug effects Cells, Cultured Creep Dentistry Elastic Modulus Elasticity Humans Mechanical properties Mesenchymal stem cell Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - metabolism Polymerase Chain Reaction Tension Viscoelasticity Viscosity |
title | The influence of substrate creep on mesenchymal stem cell behaviour and phenotype |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20substrate%20creep%20on%20mesenchymal%20stem%20cell%20behaviour%20and%20phenotype&rft.jtitle=Biomaterials&rft.au=Cameron,%20Andrew.%20R&rft.date=2011-09-01&rft.volume=32&rft.issue=26&rft.spage=5979&rft.epage=5993&rft.pages=5979-5993&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.04.003&rft_dat=%3Cproquest_cross%3E883046375%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-3eb5e91443ecd5e27c9779c91ed0c2b729c40b11623b8c7cff9d6a70c4ee2a953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875057915&rft_id=info:pmid/21621838&rfr_iscdi=true |