Loading…
Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence
The glycosylphosphatidylinositol-modified protein Rhd3/Pga29 of the human pathogen Candida albicans belongs to a family of cell wall proteins that are widespread among Candida species but are not found in other fungi. Pga29 is covalently linked to the β-1,3-glucan framework of the cell wall via β-1,...
Saved in:
Published in: | Yeast (Chichester, England) England), 2010-08, Vol.27 (8), p.611-624 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The glycosylphosphatidylinositol-modified protein Rhd3/Pga29 of the human pathogen Candida albicans belongs to a family of cell wall proteins that are widespread among Candida species but are not found in other fungi. Pga29 is covalently linked to the β-1,3-glucan framework of the cell wall via β-1,6-glucan. It is a small and abundant O-glycosylated protein and requires the protein-O-mannosyl transferase Pmt1 for glycosylation. Furthermore, Pga29 is strongly expressed in yeast cells but is downregulated in hyphae. Removal of the PGA29 gene in C. albicans leads to a significant reduction of cell wall mannan; however, Pga29 does not seem to have a major role in maintaining cell wall integrity. In addition, adhesion capacity and hyphae formation appear normal in pga29 deletion mutants. Importantly, the pga29 deletion mutant is less virulent, and infection of reconstituted human epithelium with the pga29 mutant results in a diminished induction of proinflammatory cytokines, such as GM-CSF, TNF, IL-6 and IL-8. We propose that the reduced virulence of the pga29 mutant is a consequence of altered surface properties, resulting in altered fungal recognition. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0749-503X 1097-0061 1097-0061 |
DOI: | 10.1002/yea.1790 |