Loading…

Conductive supports for combined AFM–SECM on biological membranes

Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS(2), template stripped gold, and template stripped platinum are compared as...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2008-09, Vol.19 (38), p.384004-384004
Main Authors: Frederix, Patrick L T M, Bosshart, Patrick D, Akiyama, Terunobu, Chami, Mohamed, Gullo, Maurizio R, Blackstock, Jason J, Dooleweerdt, Karin, de Rooij, Nico F, Staufer, Urs, Engel, Andreas
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS(2), template stripped gold, and template stripped platinum are compared as supports for high resolution imaging of reconstituted membrane proteins or native membranes, and as electrodes for transferring electrons from or to a redox molecule. We demonstrate that high resolution topographs of the bacterial outer membrane protein F can be recorded by contact mode AFM on all four supports. Electrochemical feedback experiments with conductive cantilevers that feature nanometre-scale electrodes showed fast re-oxidation of the redox couple Ru(NH(3))(6)(3+/2+) with the two metal supports after prolonged immersion in electrolyte. In contrast, the re-oxidation rates decayed quickly to unpractical levels with HOPG or MoS(2) under physiological conditions. On HOPG we observed heterogeneity in the re-oxidation rate of the redox molecules with higher feedback currents at step edges. The latter results demonstrate the capability of conductive cantilevers with small electrodes to measure minor variations in an SECM signal and to relate them to nanometre-scale features in a simultaneously recorded AFM topography. Rapid decay of re-oxidation rate and surface heterogeneity make HOPG or MoS(2) less attractive for combined AFM-SECM experiments on biological membranes than template stripped gold or platinum supports.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/19/38/384004