Loading…

Mechanisms of postsynthesis doping of boron nitride nanostructures with carbon from first-principles simulations

Electron-beam-mediated postsynthesis doping of boron-nitride nanostructures with carbon atoms [Nature (London) 464, 571 (2010); J. Am. Chem. Soc. 132, 13 692 (2010)] was recently demonstrated, thus opening a new way to control the electronic properties of these systems. Using density-functional theo...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2011-07, Vol.107 (3), p.035501-035501, Article 035501
Main Authors: Berseneva, Natalia, Krasheninnikov, Arkady V, Nieminen, Risto M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electron-beam-mediated postsynthesis doping of boron-nitride nanostructures with carbon atoms [Nature (London) 464, 571 (2010); J. Am. Chem. Soc. 132, 13 692 (2010)] was recently demonstrated, thus opening a new way to control the electronic properties of these systems. Using density-functional theory static and dynamic calculations, we show that the substitution process is governed not only by the response of such systems to irradiation, but also by the energetics of the atomic configurations, especially when the system is electrically charged. We suggest using spatially localized electron irradiation for making carbon islands and ribbons embedded into BN sheets. We further study the magnetic and electronic properties of such hybrid nanostructures and show that triangular carbon islands embedded into BN sheets possess magnetic moments, which can be switched on and off by electrically charging the structure.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.107.035501