Loading…

Histone Deacetylase Inhibitors Sensitize Human Non-small Cell Lung Cancer Cells to Ionizing Radiation Through Acetyl p53-Mediated c-myc Down-Regulation

Histone deacetylase inhibitors (HDACIs) induce growth arrest and apoptosis in cancer cells. In addition to their intrinsic anticancer properties, HDACIs modulate cellular responses to ionizing radiation (IR). We examined the molecular mechanism(s) associated with the radiosensitizing effects of HDAC...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thoracic oncology 2011-08, Vol.6 (8), p.1313-1319
Main Authors: Seo, Sung-Keum, Jin, Hyeon-Ok, Woo, Sang-Hyeok, Kim, Young-Sun, An, Sungkwan, Lee, Jae-Ho, Hong, Seok-Il, Lee, Kee-Ho, Choe, Tae-Boo, Park, In-Chul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Histone deacetylase inhibitors (HDACIs) induce growth arrest and apoptosis in cancer cells. In addition to their intrinsic anticancer properties, HDACIs modulate cellular responses to ionizing radiation (IR). We examined the molecular mechanism(s) associated with the radiosensitizing effects of HDACIs in human lung cancer cells. Lung cancer cells were pretreated with the appropriate concentrations of suberoylanilide hydroxamic acid or trichostatin A. After 2 hours, cells were irradiated with various doses of γ-IR, and then we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, fluorescence-activated cell sorting analysis, clonogenic assay, and Western blotting to detect cell viability or apoptosis and changes of specific proteins expression levels. In this study, we showed that HDACIs (including suberoylanilide hydroxamic acid and trichostatin A) and IR synergistically trigger cell death in human non-small cell lung cancer cells. Cell viability and clonogenic survival were markedly decreased in cultures cotreated with HDACIs and IR. Interestingly, p53 acetylation at lysine 382 was significantly increased, and c-myc expression simultaneously down-regulated in cotreated cells. Radiosensitization by HDACIs was inhibited on transfection with small interfering RNA against p53 and c-myc overexpression, supporting the involvement of p53 and c-myc in this process. Furthermore, c-myc down-regulation and apoptotic cell death coinduced by IR and HDACI were suppressed in cells transfected with mutant K382R p53 and C135Y p53 displaying loss of acetylation at lysine 382 and DNA-binding activity, respectively. Our results collectively demonstrate that the degree of radiosensitization by HDACIs is influenced by acetyl p53-mediated c-myc down-regulation.
ISSN:1556-0864
1556-1380
DOI:10.1097/JTO.0b013e318220caff