Loading…

Description of the two strains of turkey coccidia Eimeria adenoeides with remarkable morphological variability

Although oocyst morphology was always considered as a reliable parameter for coccidian species discrimination we describe strain variation of turkey coccidia, Eimeria adenoeides, which remarkably exceeds the variation observed in any other Eimeria species. Two strains have been isolated – the first...

Full description

Saved in:
Bibliographic Details
Published in:Parasitology 2011-09, Vol.138 (10), p.1211-1216
Main Authors: POPLSTEIN, MARTIN, VRBA, VLADIMIR
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although oocyst morphology was always considered as a reliable parameter for coccidian species discrimination we describe strain variation of turkey coccidia, Eimeria adenoeides, which remarkably exceeds the variation observed in any other Eimeria species. Two strains have been isolated – the first strain maintains the typical oocyst morphology attributed to this species – large and ellipsoidal – while the second strain has small and ovoid oocysts, never described before for this species. Other biological parameters including pathogenicity were found to be similar. Cross-protection between these 2 strains in 2 immunization and challenge experiments was confirmed. Sequencing and analysis of 18S and ITS1 ribosomal DNA revealed a close relationship according to 18S and a relatively distant relationship according to ITS1. Analysis of 18S and ITS1 sequences from commercial turkey coccidiosis vaccines Immucox®-T and Coccivac®-T revealed that each vaccine contains a different strain of E. adenoeides and that these strains have 18S and ITS1 sequences homologous to the sequences of the strains we have isolated and described. These findings show that diagnostics of turkey coccidia according to oocyst morphology have to be carried out with caution or abolished entirely. Novel PCR-based molecular tools will be necessary for fast and reliable species discrimination.
ISSN:0031-1820
1469-8161
DOI:10.1017/S0031182011001090