Loading…
Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production
We describe the metabolic engineering of two strains of Geobacillus thermoglucosidasius to divert their fermentative carbon flux from a mixed acid pathway, to one in which ethanol becomes the major product. This involved elimination of the lactate dehydrogenase and pyruvate formate lyase pathways by...
Saved in:
Published in: | Metabolic engineering 2009-11, Vol.11 (6), p.398-408 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the metabolic engineering of two strains of
Geobacillus thermoglucosidasius to divert their fermentative carbon flux from a mixed acid pathway, to one in which ethanol becomes the major product. This involved elimination of the lactate dehydrogenase and pyruvate formate lyase pathways by disruption of the
ldh and
pflB genes, respectively, together with upregulation of expression of pyruvate dehydrogenase. Unlike the situation in
Escherichia coli, pyruvate dehydrogenase is active under anaerobic conditions in thermophilic bacilli, but expressed sub-optimally for a role as the primary fermentation pathway. Mutants were initially characterised in batch culture using glucose as carbon substrate and strains with all three modifications shown to form ethanol efficiently and rapidly at temperatures in excess of 60
°C in yields in excess of 90% of theoretical. The strain containing the 3 modifications, TM242, was also shown to efficiently ferment cellobiose and a mixed hexose and pentose feed. |
---|---|
ISSN: | 1096-7176 1096-7184 |
DOI: | 10.1016/j.ymben.2009.08.005 |