Loading…
Inhaled whole exhaust and its effect on exercise performance and vascular function
Context: Internal combustion engines are a major source of particulate matter (PM) which has been shown to result in vasoconstriction, yet no present study to our knowledge has investigated the effect of exhaust emissions on both exercise performance and the vasculature. Objective: To examine the ef...
Saved in:
Published in: | Inhalation toxicology 2011-09, Vol.23 (11), p.658-667 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Context: Internal combustion engines are a major source of particulate matter (PM) which has been shown to result in vasoconstriction, yet no present study to our knowledge has investigated the effect of exhaust emissions on both exercise performance and the vasculature. Objective: To examine the effect of freshly generated whole exhaust on exercise performance, pulmonary arterial pressure (PP), and flow-mediated vasodilation (FMD) of the brachial artery. Materials and Methods: Sixteen male, collegiate athletes (age: 20.8 ± 1.28 years) were randomly assigned to submaximal exercise for 20 min followed by a 6 min maximal work accumulation exercise test in either high PM (HPM) or low PM (LPM) conditions on two consecutive days. After a 7-day washout period, subjects completed identical exercise trials in the alternate condition. HPM conditions were generated from a 4-cycle gasoline engine. The participants' PP and FMD were assessed before and after each exercise trial by tricuspid regurgitant velocity and brachial artery imaging, respectively. Results: Total work (LPM: 108.0 ± 14.8 kJ; HPM: 104.9 ± 15.2kJ, p = 0.019) and FMD (LPM: 8.17 ± 6.41%; HPM: 6.59 ± 2.53%; p = 0.034) significantly decreased in HPM while PP was significantly increased (LPM: 16.9 ± 1.13 mmHg; HPM: 17.9 ± 1.70 mmHg; p = 0.004). A significant correlation was identified between the change in exercise performance and the change in FMD (r = 0.494; p = 0.026) after the first HPM trial. Conclusion: Exercise performance declined in HPM conditions in part due to impaired vasodilation in the peripheral vasculature. |
---|---|
ISSN: | 0895-8378 1091-7691 |
DOI: | 10.3109/08958378.2011.604106 |