Loading…

Decreased dendritic spine density of neurons of the prefrontal cortex and nucleus accumbens and enhanced amphetamine sensitivity in postpubertal rats after a neonatal amygdala lesion

A neonatal basolateral‐amygdala (nBLA) lesion in rats could be a potential animal model to study the early neurodevelopmental abnormalities associated with the behavioral and morphological brain changes observed in schizophrenia. Morphological alterations in pyramidal neurons from the prefrontal cor...

Full description

Saved in:
Bibliographic Details
Published in:Synapse (New York, N.Y.) N.Y.), 2009-12, Vol.63 (12), p.1143-1153
Main Authors: Solis, Oscar, Vázquez-Roque, Rubén Antonio, Camacho-Abrego, Israel, Gamboa, Citlalli, De La Cruz, Fidel, Zamudio, Sergio, Flores, Gonzalo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A neonatal basolateral‐amygdala (nBLA) lesion in rats could be a potential animal model to study the early neurodevelopmental abnormalities associated with the behavioral and morphological brain changes observed in schizophrenia. Morphological alterations in pyramidal neurons from the prefrontal cortex (PFC) have been observed in postmortem schizophrenic brains, mainly because of decreased dendritic arbor and spine density. We assessed the effects of nBLA‐lesion on the dendritic morphology of neurons from the PFC and the nucleus accumbens (NAcc) in rats. nBLA lesions were made on postnatal day 7 (PD7), and later, the dendritic morphology was studied by the Golgi‐Cox stain procedure followed by Sholl analysis at PD35 (prepubertal) and PD60 (adult) ages. We also evaluated the effects of the nBLA‐lesion on locomotor activity caused by a novel environment, apomorphine, and amphetamine. Adult animals with nBLA lesions showed a decreased spine density in pyramidal neurons from the PFC and in medium spiny cells from the NAcc. An increased locomotion in a novel environment and in amphetamine‐treated adult animals with an nBLA‐lesion was observed. Our results indicate that nBLA‐lesion alters the neuronal dendrite morphology of the NAcc and PFC, suggesting a disconnection between these limbic structures. The locomotion paradigms support the idea that dopaminergic transmission is altered in the nBLA lesion model. This could help to understand the consequences of an earlier amygdala dysfunction in schizophrenia. Synapse 63:1143–1153, 2009. © 2009 Wiley‐Liss, Inc.
ISSN:0887-4476
1098-2396
1098-2396
DOI:10.1002/syn.20697