Loading…

Alginate and lignin-based formulations to control pesticides leaching in a calcareous soil

► Highly soluble pesticides have been incorporated in controlled release formulations (CRFs). ► Effects of natural polymers and sorbents on release and mobility of pesticides have been evaluated in soil. ► Release rate of pesticides can be controlled by using alginate-activated carbon and lignin-bas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2011-06, Vol.190 (1), p.794-801
Main Authors: Fernández-Pérez, M., Garrido-Herrera, F.J., González-Pradas, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-665ed985d2c1757fce00fa3158e0e3056b7457931b39752d6d946a50c6c773433
cites cdi_FETCH-LOGICAL-c483t-665ed985d2c1757fce00fa3158e0e3056b7457931b39752d6d946a50c6c773433
container_end_page 801
container_issue 1
container_start_page 794
container_title Journal of hazardous materials
container_volume 190
creator Fernández-Pérez, M.
Garrido-Herrera, F.J.
González-Pradas, E.
description ► Highly soluble pesticides have been incorporated in controlled release formulations (CRFs). ► Effects of natural polymers and sorbents on release and mobility of pesticides have been evaluated in soil. ► Release rate of pesticides can be controlled by using alginate-activated carbon and lignin-based formulations. ► CRFs diminish mobility of pesticides in a calcareous soil. Important risk of groundwater pollution has been observed as a result of rapid leaching of highly soluble pesticides when used in agronomic practices as conventional formulations. This risk can be minimized through the application of the pesticide at a set rate using controlled release formulations (CRFs). In this research, CRFs of isoproturon, imidacloprid and cyromazine have been evaluated in a calcareous soil. The effects of two natural polymers (alginate and lignin) and two modifying sorbents (bentonite and activated carbon) on pesticide release kinetics from CRFs have been investigated, as well as mobility of pesticides using soil columns. The rate of pesticide release in soil from CRFs diminished in all cases in relation to technical products. From the analysis of the time taken for 50% of the active ingredient to be released into soil ( T 50soil), it can be deduced that the release rate of pesticides can be controlled by using activated carbon in the alginate-based CRFs and mixing the pesticide with kraft lignin. Mobility experiments showed that the use of CRFs clearly reduces the presence of isoproturon and imidacloprid in the leachate compared to technical products, and to a lesser extent for cyromacine due to its high water solubility.
doi_str_mv 10.1016/j.jhazmat.2011.03.118
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888102895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411004341</els_id><sourcerecordid>888102895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-665ed985d2c1757fce00fa3158e0e3056b7457931b39752d6d946a50c6c773433</originalsourceid><addsrcrecordid>eNqF0btuFDEUBuARApFN4BEANyg0M_iM71UURdykSBSQhsby2p6NVx57sWeR4OnxahfoSOXmOz6__XfdC8ADYOBvt8P23vyazTKMGGDAZACQj7oVSEF6Qgh_3K0wwbQnUtGz7rzWLcYYBKNPu7MRGFAx0lX37TpuQjKLRyY5FMMmhdSvTfUOTbnM-2iWkFNFS0Y2p6XkiHa-LsEG5yuK3tj7kDYoJGSQNdGa4vO-oppDfNY9mUys_vnpvOju3r_7evOxv_384dPN9W1vqSRLzznzTknmRtvSicl6jCdDgEmPPcGMrwVlQhFYEyXY6LhTlBuGLbdCEErIRXd5vHdX8vd9C6fnUK2P0aRDFi2lBDxKxR6WXBLBRy6afPNfCVwAAaU4NMqO1JZca_GT3pUwm_JTA9aHqvRWn6rSh6o0JrpV1eZenlbs17N3f6f-dNPA6xMwtX3tVEyyof5zdKQMFG7u1dFNJmuzKc3cfWmbWKtbYSUPr7k6Ct9q-BF80dUGn6x3oXi7aJfDA2F_AziWvEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671319961</pqid></control><display><type>article</type><title>Alginate and lignin-based formulations to control pesticides leaching in a calcareous soil</title><source>Elsevier</source><creator>Fernández-Pérez, M. ; Garrido-Herrera, F.J. ; González-Pradas, E.</creator><creatorcontrib>Fernández-Pérez, M. ; Garrido-Herrera, F.J. ; González-Pradas, E.</creatorcontrib><description>► Highly soluble pesticides have been incorporated in controlled release formulations (CRFs). ► Effects of natural polymers and sorbents on release and mobility of pesticides have been evaluated in soil. ► Release rate of pesticides can be controlled by using alginate-activated carbon and lignin-based formulations. ► CRFs diminish mobility of pesticides in a calcareous soil. Important risk of groundwater pollution has been observed as a result of rapid leaching of highly soluble pesticides when used in agronomic practices as conventional formulations. This risk can be minimized through the application of the pesticide at a set rate using controlled release formulations (CRFs). In this research, CRFs of isoproturon, imidacloprid and cyromazine have been evaluated in a calcareous soil. The effects of two natural polymers (alginate and lignin) and two modifying sorbents (bentonite and activated carbon) on pesticide release kinetics from CRFs have been investigated, as well as mobility of pesticides using soil columns. The rate of pesticide release in soil from CRFs diminished in all cases in relation to technical products. From the analysis of the time taken for 50% of the active ingredient to be released into soil ( T 50soil), it can be deduced that the release rate of pesticides can be controlled by using activated carbon in the alginate-based CRFs and mixing the pesticide with kraft lignin. Mobility experiments showed that the use of CRFs clearly reduces the presence of isoproturon and imidacloprid in the leachate compared to technical products, and to a lesser extent for cyromacine due to its high water solubility.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.03.118</identifier><identifier>PMID: 21514724</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Activated carbon ; active ingredients ; adsorbents ; Adsorption ; Alginate ; Alginates ; Alginates - chemistry ; Applied sciences ; Bentonite ; Biological and physicochemical phenomena ; calcareous soils ; Charcoal ; Chemical engineering ; Controlled release formulations ; Crystallization, leaching, miscellaneous separations ; cyromazine ; Exact sciences and technology ; Formulations ; Glucuronic Acid - chemistry ; groundwater contamination ; Groundwaters ; Hexuronic Acids - chemistry ; Highly mobile pesticides ; Imidacloprid ; Imidazoles ; isoproturon ; Kinetics ; Leaching ; Lignin ; Lignin - chemistry ; mixing ; Natural water pollution ; Neonicotinoids ; Nitro Compounds ; pesticide application ; Pesticides ; Pesticides - chemistry ; Phenylurea Compounds ; plant cultural practices ; Pollution ; Risk ; Soil (material) ; Soil mobility ; Soil Pollutants ; Water Pollutants, Chemical - chemistry ; Water Pollution - prevention &amp; control ; water solubility ; Water treatment and pollution</subject><ispartof>Journal of hazardous materials, 2011-06, Vol.190 (1), p.794-801</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-665ed985d2c1757fce00fa3158e0e3056b7457931b39752d6d946a50c6c773433</citedby><cites>FETCH-LOGICAL-c483t-665ed985d2c1757fce00fa3158e0e3056b7457931b39752d6d946a50c6c773433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24245190$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21514724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández-Pérez, M.</creatorcontrib><creatorcontrib>Garrido-Herrera, F.J.</creatorcontrib><creatorcontrib>González-Pradas, E.</creatorcontrib><title>Alginate and lignin-based formulations to control pesticides leaching in a calcareous soil</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>► Highly soluble pesticides have been incorporated in controlled release formulations (CRFs). ► Effects of natural polymers and sorbents on release and mobility of pesticides have been evaluated in soil. ► Release rate of pesticides can be controlled by using alginate-activated carbon and lignin-based formulations. ► CRFs diminish mobility of pesticides in a calcareous soil. Important risk of groundwater pollution has been observed as a result of rapid leaching of highly soluble pesticides when used in agronomic practices as conventional formulations. This risk can be minimized through the application of the pesticide at a set rate using controlled release formulations (CRFs). In this research, CRFs of isoproturon, imidacloprid and cyromazine have been evaluated in a calcareous soil. The effects of two natural polymers (alginate and lignin) and two modifying sorbents (bentonite and activated carbon) on pesticide release kinetics from CRFs have been investigated, as well as mobility of pesticides using soil columns. The rate of pesticide release in soil from CRFs diminished in all cases in relation to technical products. From the analysis of the time taken for 50% of the active ingredient to be released into soil ( T 50soil), it can be deduced that the release rate of pesticides can be controlled by using activated carbon in the alginate-based CRFs and mixing the pesticide with kraft lignin. Mobility experiments showed that the use of CRFs clearly reduces the presence of isoproturon and imidacloprid in the leachate compared to technical products, and to a lesser extent for cyromacine due to its high water solubility.</description><subject>Activated carbon</subject><subject>active ingredients</subject><subject>adsorbents</subject><subject>Adsorption</subject><subject>Alginate</subject><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Applied sciences</subject><subject>Bentonite</subject><subject>Biological and physicochemical phenomena</subject><subject>calcareous soils</subject><subject>Charcoal</subject><subject>Chemical engineering</subject><subject>Controlled release formulations</subject><subject>Crystallization, leaching, miscellaneous separations</subject><subject>cyromazine</subject><subject>Exact sciences and technology</subject><subject>Formulations</subject><subject>Glucuronic Acid - chemistry</subject><subject>groundwater contamination</subject><subject>Groundwaters</subject><subject>Hexuronic Acids - chemistry</subject><subject>Highly mobile pesticides</subject><subject>Imidacloprid</subject><subject>Imidazoles</subject><subject>isoproturon</subject><subject>Kinetics</subject><subject>Leaching</subject><subject>Lignin</subject><subject>Lignin - chemistry</subject><subject>mixing</subject><subject>Natural water pollution</subject><subject>Neonicotinoids</subject><subject>Nitro Compounds</subject><subject>pesticide application</subject><subject>Pesticides</subject><subject>Pesticides - chemistry</subject><subject>Phenylurea Compounds</subject><subject>plant cultural practices</subject><subject>Pollution</subject><subject>Risk</subject><subject>Soil (material)</subject><subject>Soil mobility</subject><subject>Soil Pollutants</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollution - prevention &amp; control</subject><subject>water solubility</subject><subject>Water treatment and pollution</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0btuFDEUBuARApFN4BEANyg0M_iM71UURdykSBSQhsby2p6NVx57sWeR4OnxahfoSOXmOz6__XfdC8ADYOBvt8P23vyazTKMGGDAZACQj7oVSEF6Qgh_3K0wwbQnUtGz7rzWLcYYBKNPu7MRGFAx0lX37TpuQjKLRyY5FMMmhdSvTfUOTbnM-2iWkFNFS0Y2p6XkiHa-LsEG5yuK3tj7kDYoJGSQNdGa4vO-oppDfNY9mUys_vnpvOju3r_7evOxv_384dPN9W1vqSRLzznzTknmRtvSicl6jCdDgEmPPcGMrwVlQhFYEyXY6LhTlBuGLbdCEErIRXd5vHdX8vd9C6fnUK2P0aRDFi2lBDxKxR6WXBLBRy6afPNfCVwAAaU4NMqO1JZca_GT3pUwm_JTA9aHqvRWn6rSh6o0JrpV1eZenlbs17N3f6f-dNPA6xMwtX3tVEyyof5zdKQMFG7u1dFNJmuzKc3cfWmbWKtbYSUPr7k6Ct9q-BF80dUGn6x3oXi7aJfDA2F_AziWvEQ</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Fernández-Pérez, M.</creator><creator>Garrido-Herrera, F.J.</creator><creator>González-Pradas, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7U1</scope><scope>7U2</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20110615</creationdate><title>Alginate and lignin-based formulations to control pesticides leaching in a calcareous soil</title><author>Fernández-Pérez, M. ; Garrido-Herrera, F.J. ; González-Pradas, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-665ed985d2c1757fce00fa3158e0e3056b7457931b39752d6d946a50c6c773433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated carbon</topic><topic>active ingredients</topic><topic>adsorbents</topic><topic>Adsorption</topic><topic>Alginate</topic><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Applied sciences</topic><topic>Bentonite</topic><topic>Biological and physicochemical phenomena</topic><topic>calcareous soils</topic><topic>Charcoal</topic><topic>Chemical engineering</topic><topic>Controlled release formulations</topic><topic>Crystallization, leaching, miscellaneous separations</topic><topic>cyromazine</topic><topic>Exact sciences and technology</topic><topic>Formulations</topic><topic>Glucuronic Acid - chemistry</topic><topic>groundwater contamination</topic><topic>Groundwaters</topic><topic>Hexuronic Acids - chemistry</topic><topic>Highly mobile pesticides</topic><topic>Imidacloprid</topic><topic>Imidazoles</topic><topic>isoproturon</topic><topic>Kinetics</topic><topic>Leaching</topic><topic>Lignin</topic><topic>Lignin - chemistry</topic><topic>mixing</topic><topic>Natural water pollution</topic><topic>Neonicotinoids</topic><topic>Nitro Compounds</topic><topic>pesticide application</topic><topic>Pesticides</topic><topic>Pesticides - chemistry</topic><topic>Phenylurea Compounds</topic><topic>plant cultural practices</topic><topic>Pollution</topic><topic>Risk</topic><topic>Soil (material)</topic><topic>Soil mobility</topic><topic>Soil Pollutants</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollution - prevention &amp; control</topic><topic>water solubility</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Pérez, M.</creatorcontrib><creatorcontrib>Garrido-Herrera, F.J.</creatorcontrib><creatorcontrib>González-Pradas, E.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Pérez, M.</au><au>Garrido-Herrera, F.J.</au><au>González-Pradas, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alginate and lignin-based formulations to control pesticides leaching in a calcareous soil</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-06-15</date><risdate>2011</risdate><volume>190</volume><issue>1</issue><spage>794</spage><epage>801</epage><pages>794-801</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>► Highly soluble pesticides have been incorporated in controlled release formulations (CRFs). ► Effects of natural polymers and sorbents on release and mobility of pesticides have been evaluated in soil. ► Release rate of pesticides can be controlled by using alginate-activated carbon and lignin-based formulations. ► CRFs diminish mobility of pesticides in a calcareous soil. Important risk of groundwater pollution has been observed as a result of rapid leaching of highly soluble pesticides when used in agronomic practices as conventional formulations. This risk can be minimized through the application of the pesticide at a set rate using controlled release formulations (CRFs). In this research, CRFs of isoproturon, imidacloprid and cyromazine have been evaluated in a calcareous soil. The effects of two natural polymers (alginate and lignin) and two modifying sorbents (bentonite and activated carbon) on pesticide release kinetics from CRFs have been investigated, as well as mobility of pesticides using soil columns. The rate of pesticide release in soil from CRFs diminished in all cases in relation to technical products. From the analysis of the time taken for 50% of the active ingredient to be released into soil ( T 50soil), it can be deduced that the release rate of pesticides can be controlled by using activated carbon in the alginate-based CRFs and mixing the pesticide with kraft lignin. Mobility experiments showed that the use of CRFs clearly reduces the presence of isoproturon and imidacloprid in the leachate compared to technical products, and to a lesser extent for cyromacine due to its high water solubility.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21514724</pmid><doi>10.1016/j.jhazmat.2011.03.118</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-06, Vol.190 (1), p.794-801
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_888102895
source Elsevier
subjects Activated carbon
active ingredients
adsorbents
Adsorption
Alginate
Alginates
Alginates - chemistry
Applied sciences
Bentonite
Biological and physicochemical phenomena
calcareous soils
Charcoal
Chemical engineering
Controlled release formulations
Crystallization, leaching, miscellaneous separations
cyromazine
Exact sciences and technology
Formulations
Glucuronic Acid - chemistry
groundwater contamination
Groundwaters
Hexuronic Acids - chemistry
Highly mobile pesticides
Imidacloprid
Imidazoles
isoproturon
Kinetics
Leaching
Lignin
Lignin - chemistry
mixing
Natural water pollution
Neonicotinoids
Nitro Compounds
pesticide application
Pesticides
Pesticides - chemistry
Phenylurea Compounds
plant cultural practices
Pollution
Risk
Soil (material)
Soil mobility
Soil Pollutants
Water Pollutants, Chemical - chemistry
Water Pollution - prevention & control
water solubility
Water treatment and pollution
title Alginate and lignin-based formulations to control pesticides leaching in a calcareous soil
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alginate%20and%20lignin-based%20formulations%20to%20control%20pesticides%20leaching%20in%20a%20calcareous%20soil&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Fern%C3%A1ndez-P%C3%A9rez,%20M.&rft.date=2011-06-15&rft.volume=190&rft.issue=1&rft.spage=794&rft.epage=801&rft.pages=794-801&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.03.118&rft_dat=%3Cproquest_cross%3E888102895%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-665ed985d2c1757fce00fa3158e0e3056b7457931b39752d6d946a50c6c773433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671319961&rft_id=info:pmid/21514724&rfr_iscdi=true