Loading…

Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)

1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Com...

Full description

Saved in:
Bibliographic Details
Published in:Aquatic conservation 2010-11, Vol.20 (7), p.717-727
Main Authors: Hunter, P.D, Gilvear, D.J, Tyler, A.N, Willby, N.J, Kelly, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3
cites cdi_FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3
container_end_page 727
container_issue 7
container_start_page 717
container_title Aquatic conservation
container_volume 20
creator Hunter, P.D
Gilvear, D.J
Tyler, A.N
Willby, N.J
Kelly, A
description 1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/aqc.1144
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888102920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888102920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</originalsourceid><addsrcrecordid>eNp10EFv0zAYxvEIgcQYSHwDfEGMQ4ZfO47jYxXBVhhFqEw7Wm9cOzVL4sxOGf32pGq1Gyf78NNf9pNlb4FeAqXsEz6YS4CieJadAVUqp1KI54e7YLksgb_MXqX0m1KqSijPsvY7jqMfWtKjiWHc7idvyB_b2gknHwbiB5K22HXhkXR4bxPZpYOetpbUoR_RTGThYxPiYMl6tGaKoY04bufKssfWRnJRL9bLj6-zFw67ZN-czvPs9svnX_V1fvPjalkvbnLDK1XkjSqANo47zhyAtcYUIBrecLQCXCM3BWwklJtKopBGlRuhmGFGNoYK1UjHz7MPx-4Yw8POpkn3PhnbdTjYsEu6qiqgTDE6y4ujnP-dUrROj9H3GPcaqD5Mqecp9WHKmb4_RTEZ7FzEwfj05BnnpZQln11-dI--s_v_9vTiZ33qnrxPk_375DHe61JyKfTd6krffVuJr9eS69Xs3x29w6CxjfMbbteMAqegKBdS8n_7WZqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888102920</pqid></control><display><type>article</type><title>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</title><source>Wiley</source><creator>Hunter, P.D ; Gilvear, D.J ; Tyler, A.N ; Willby, N.J ; Kelly, A</creator><creatorcontrib>Hunter, P.D ; Gilvear, D.J ; Tyler, A.N ; Willby, N.J ; Kelly, A</creatorcontrib><description>1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1052-7613</identifier><identifier>ISSN: 1099-0755</identifier><identifier>EISSN: 1099-0755</identifier><identifier>DOI: 10.1002/aqc.1144</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Applied ecology ; aquatic plants ; Biological and medical sciences ; Conservation, protection and management of environment and wildlife ; Fresh water ecosystems ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; Habitats Directive ; lakes ; Marine ; remote sensing ; support vector machines ; Synecology ; Water Framework Directive</subject><ispartof>Aquatic conservation, 2010-11, Vol.20 (7), p.717-727</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</citedby><cites>FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23367763$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, P.D</creatorcontrib><creatorcontrib>Gilvear, D.J</creatorcontrib><creatorcontrib>Tyler, A.N</creatorcontrib><creatorcontrib>Willby, N.J</creatorcontrib><creatorcontrib>Kelly, A</creatorcontrib><title>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</title><title>Aquatic conservation</title><addtitle>Aquatic Conserv: Mar. Freshw. Ecosyst</addtitle><description>1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>aquatic plants</subject><subject>Biological and medical sciences</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Fresh water ecosystems</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Habitats Directive</subject><subject>lakes</subject><subject>Marine</subject><subject>remote sensing</subject><subject>support vector machines</subject><subject>Synecology</subject><subject>Water Framework Directive</subject><issn>1052-7613</issn><issn>1099-0755</issn><issn>1099-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10EFv0zAYxvEIgcQYSHwDfEGMQ4ZfO47jYxXBVhhFqEw7Wm9cOzVL4sxOGf32pGq1Gyf78NNf9pNlb4FeAqXsEz6YS4CieJadAVUqp1KI54e7YLksgb_MXqX0m1KqSijPsvY7jqMfWtKjiWHc7idvyB_b2gknHwbiB5K22HXhkXR4bxPZpYOetpbUoR_RTGThYxPiYMl6tGaKoY04bufKssfWRnJRL9bLj6-zFw67ZN-czvPs9svnX_V1fvPjalkvbnLDK1XkjSqANo47zhyAtcYUIBrecLQCXCM3BWwklJtKopBGlRuhmGFGNoYK1UjHz7MPx-4Yw8POpkn3PhnbdTjYsEu6qiqgTDE6y4ujnP-dUrROj9H3GPcaqD5Mqecp9WHKmb4_RTEZ7FzEwfj05BnnpZQln11-dI--s_v_9vTiZ33qnrxPk_375DHe61JyKfTd6krffVuJr9eS69Xs3x29w6CxjfMbbteMAqegKBdS8n_7WZqE</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Hunter, P.D</creator><creator>Gilvear, D.J</creator><creator>Tyler, A.N</creator><creator>Willby, N.J</creator><creator>Kelly, A</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201011</creationdate><title>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</title><author>Hunter, P.D ; Gilvear, D.J ; Tyler, A.N ; Willby, N.J ; Kelly, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>aquatic plants</topic><topic>Biological and medical sciences</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Fresh water ecosystems</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Habitats Directive</topic><topic>lakes</topic><topic>Marine</topic><topic>remote sensing</topic><topic>support vector machines</topic><topic>Synecology</topic><topic>Water Framework Directive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, P.D</creatorcontrib><creatorcontrib>Gilvear, D.J</creatorcontrib><creatorcontrib>Tyler, A.N</creatorcontrib><creatorcontrib>Willby, N.J</creatorcontrib><creatorcontrib>Kelly, A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Aquatic conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, P.D</au><au>Gilvear, D.J</au><au>Tyler, A.N</au><au>Willby, N.J</au><au>Kelly, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)</atitle><jtitle>Aquatic conservation</jtitle><addtitle>Aquatic Conserv: Mar. Freshw. Ecosyst</addtitle><date>2010-11</date><risdate>2010</risdate><volume>20</volume><issue>7</issue><spage>717</spage><epage>727</epage><pages>717-727</pages><issn>1052-7613</issn><issn>1099-0755</issn><eissn>1099-0755</eissn><abstract>1. The ecological status of shallow lakes is highly dependent on the abundance and composition of macrophytes. However, large‐scale surveys are often confined to a small number of water bodies and undertaken only infrequently owing to logistical and financial constraints. 2. Data acquired by the Compact Airborne Spectrographic Imager‐2 (CASI‐2) was used to map the distribution of macrophytes in the Upper Thurne region of the Norfolk Broads, UK. Three different approaches to image classification were evaluated: (i) Euclidean minimum distance, (ii) Gaussian maximum likelihood, and (iii) support vector machines. 3. The results show macrophyte growth‐habits (i.e. submerged, floating‐leaved, partially‐emergent, emergent) and submerged species could be mapped with a maximum overall classification accuracy of 78% and 87%, respectively. The Gaussian maximum likelihood algorithm and support vector machine returned the highest classification accuracies in each instance. 4. This study suggests that remote sensing is a potentially powerful tool for large‐scale assessment of the cover and distribution of aquatic vegetation in clear water shallow lakes, particularly with respect to upscaling field survey data to a functionally relevant form, and supporting site‐condition monitoring under the European Union Habitats (92/43/EEC) and Water Framework (2000/60/EC) directives. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/aqc.1144</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-7613
ispartof Aquatic conservation, 2010-11, Vol.20 (7), p.717-727
issn 1052-7613
1099-0755
1099-0755
language eng
recordid cdi_proquest_miscellaneous_888102920
source Wiley
subjects Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
aquatic plants
Biological and medical sciences
Conservation, protection and management of environment and wildlife
Fresh water ecosystems
Freshwater
Fundamental and applied biological sciences. Psychology
General aspects
Habitats Directive
lakes
Marine
remote sensing
support vector machines
Synecology
Water Framework Directive
title Mapping macrophytic vegetation in shallow lakes using the Compact Airborne Spectrographic Imager (CASI)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20macrophytic%20vegetation%20in%20shallow%20lakes%20using%20the%20Compact%20Airborne%20Spectrographic%20Imager%20(CASI)&rft.jtitle=Aquatic%20conservation&rft.au=Hunter,%20P.D&rft.date=2010-11&rft.volume=20&rft.issue=7&rft.spage=717&rft.epage=727&rft.pages=717-727&rft.issn=1052-7613&rft.eissn=1099-0755&rft_id=info:doi/10.1002/aqc.1144&rft_dat=%3Cproquest_cross%3E888102920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3894-b9410bf3f32f11eecc415b3b3ae51fb7d41d716d87a57c96d592c2c7bc059b7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=888102920&rft_id=info:pmid/&rfr_iscdi=true