Loading…
Resistance and uptake of heavy metals by Vorticella microstoma and its potential use in industrial wastewater treatment
The ciliate, Vorticella microstoma, showed tolerance against Cd2+ (22 μg/mL), Cu2+ (22 μg/mL), Ni2+ (17 μg/mL), and Hg2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared to the culture grown without metal stress. The decrease in cell population was 60% for Cd2+, 49% for C...
Saved in:
Published in: | Environmental progress 2010-12, Vol.29 (4), p.481-486 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4620-8965329fe61de2eb2e97372da2425134f1d14099cbdd18bc8470df98dadbca5c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4620-8965329fe61de2eb2e97372da2425134f1d14099cbdd18bc8470df98dadbca5c3 |
container_end_page | 486 |
container_issue | 4 |
container_start_page | 481 |
container_title | Environmental progress |
container_volume | 29 |
creator | Rehman, A. Shakoori, Farah R. Shakoori, A.R. |
description | The ciliate, Vorticella microstoma, showed tolerance against Cd2+ (22 μg/mL), Cu2+ (22 μg/mL), Ni2+ (17 μg/mL), and Hg2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared to the culture grown without metal stress. The decrease in cell population was 60% for Cd2+, 49% for Cu2+, 35% for Ni2+, and 49% for Hg2+ after 8 days of metal stress. The order of resistance to heavy metal, in terms of reduction in the cellular population, was Ni2+ < Hg2+ = Cu2+ < Cd2+. Metal‐uptake capability of the ciliate was worked out for its potential use as bioremediator of wastewater. V. microstoma decreased 72% of Cd2+, 82% of Cu2+, 80% of Ni2+, and 74% of Hg2+ from the medium after 96 h of incubation. V. microstoma was also able to remove 73% of Cd2+, 80% of Cu2+, 83% of Ni2+, and 76% of Hg2+ from the industrial wastewater after 6 days of incubation at room temperature. The multiple heavy metal uptake ability of V. microstoma can be exploited for metal detoxification and environmental clean‐up operations. © 2010 American Institute of Chemical Engineers Environ Prog, 2010 |
doi_str_mv | 10.1002/ep.10450 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888103498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>888103498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4620-8965329fe61de2eb2e97372da2425134f1d14099cbdd18bc8470df98dadbca5c3</originalsourceid><addsrcrecordid>eNqNkV1rFTEQhhdRsFbBnxAQ0ZvVJJvNx6WUtipFi2gPeBNmN7OYdr-aZD2ef2_Oh-dCEISBGcIzL3nnLYrnjL5hlPK3OOcuavqgOGFGiFLl-eFxFvxx8STGW0plJYw5KdZfMPqYYGyRwOjIMie4QzJ15AfCzw0ZMEEfSbMhN1NIvsW-BzL4NkwxTQPsdnyKZJ4SjslDT5aIxI-53BJT2L6sISZcQ8JAUkBIQyafFo-6LIzPDv20-HZx_vXsfXn1-fLD2burshWS01IbWVfcdCiZQ44NR6MqxR1wwWtWiY45JqgxbeMc002rhaKuM9qBa1qo2-q0eLXXncN0v2BMdvBx52LEaYlWa81oPoX-H5IayaTK5Iu_yNtpCWO2YZmSUjNVK5Gp13tqe6sYsLNz8AOEjWXUbqOyONtdVBl9eRCE2ELfhRyHj0eeV7XRUm-_WO65te9x8089e379R_fA54Tx15GHcGezDVXb1adLe7OS3_XF6qO9rn4DMLGxyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766817574</pqid></control><display><type>article</type><title>Resistance and uptake of heavy metals by Vorticella microstoma and its potential use in industrial wastewater treatment</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rehman, A. ; Shakoori, Farah R. ; Shakoori, A.R.</creator><creatorcontrib>Rehman, A. ; Shakoori, Farah R. ; Shakoori, A.R.</creatorcontrib><description>The ciliate, Vorticella microstoma, showed tolerance against Cd2+ (22 μg/mL), Cu2+ (22 μg/mL), Ni2+ (17 μg/mL), and Hg2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared to the culture grown without metal stress. The decrease in cell population was 60% for Cd2+, 49% for Cu2+, 35% for Ni2+, and 49% for Hg2+ after 8 days of metal stress. The order of resistance to heavy metal, in terms of reduction in the cellular population, was Ni2+ < Hg2+ = Cu2+ < Cd2+. Metal‐uptake capability of the ciliate was worked out for its potential use as bioremediator of wastewater. V. microstoma decreased 72% of Cd2+, 82% of Cu2+, 80% of Ni2+, and 74% of Hg2+ from the medium after 96 h of incubation. V. microstoma was also able to remove 73% of Cd2+, 80% of Cu2+, 83% of Ni2+, and 76% of Hg2+ from the industrial wastewater after 6 days of incubation at room temperature. The multiple heavy metal uptake ability of V. microstoma can be exploited for metal detoxification and environmental clean‐up operations. © 2010 American Institute of Chemical Engineers Environ Prog, 2010</description><identifier>ISSN: 1944-7442</identifier><identifier>ISSN: 1944-7450</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.10450</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Applied sciences ; bioremediation ; Exact sciences and technology ; General purification processes ; heavy-metal resistance ; metal uptake ; Microstoma ; Pollution ; Vorticella microstoma ; Wastewaters ; Water treatment and pollution</subject><ispartof>Environmental progress, 2010-12, Vol.29 (4), p.481-486</ispartof><rights>Copyright © 2010 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4620-8965329fe61de2eb2e97372da2425134f1d14099cbdd18bc8470df98dadbca5c3</citedby><cites>FETCH-LOGICAL-c4620-8965329fe61de2eb2e97372da2425134f1d14099cbdd18bc8470df98dadbca5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23598688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehman, A.</creatorcontrib><creatorcontrib>Shakoori, Farah R.</creatorcontrib><creatorcontrib>Shakoori, A.R.</creatorcontrib><title>Resistance and uptake of heavy metals by Vorticella microstoma and its potential use in industrial wastewater treatment</title><title>Environmental progress</title><addtitle>Environ. Prog. Sustainable Energy</addtitle><description>The ciliate, Vorticella microstoma, showed tolerance against Cd2+ (22 μg/mL), Cu2+ (22 μg/mL), Ni2+ (17 μg/mL), and Hg2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared to the culture grown without metal stress. The decrease in cell population was 60% for Cd2+, 49% for Cu2+, 35% for Ni2+, and 49% for Hg2+ after 8 days of metal stress. The order of resistance to heavy metal, in terms of reduction in the cellular population, was Ni2+ < Hg2+ = Cu2+ < Cd2+. Metal‐uptake capability of the ciliate was worked out for its potential use as bioremediator of wastewater. V. microstoma decreased 72% of Cd2+, 82% of Cu2+, 80% of Ni2+, and 74% of Hg2+ from the medium after 96 h of incubation. V. microstoma was also able to remove 73% of Cd2+, 80% of Cu2+, 83% of Ni2+, and 76% of Hg2+ from the industrial wastewater after 6 days of incubation at room temperature. The multiple heavy metal uptake ability of V. microstoma can be exploited for metal detoxification and environmental clean‐up operations. © 2010 American Institute of Chemical Engineers Environ Prog, 2010</description><subject>Applied sciences</subject><subject>bioremediation</subject><subject>Exact sciences and technology</subject><subject>General purification processes</subject><subject>heavy-metal resistance</subject><subject>metal uptake</subject><subject>Microstoma</subject><subject>Pollution</subject><subject>Vorticella microstoma</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>1944-7442</issn><issn>1944-7450</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFTEQhhdRsFbBnxAQ0ZvVJJvNx6WUtipFi2gPeBNmN7OYdr-aZD2ef2_Oh-dCEISBGcIzL3nnLYrnjL5hlPK3OOcuavqgOGFGiFLl-eFxFvxx8STGW0plJYw5KdZfMPqYYGyRwOjIMie4QzJ15AfCzw0ZMEEfSbMhN1NIvsW-BzL4NkwxTQPsdnyKZJ4SjslDT5aIxI-53BJT2L6sISZcQ8JAUkBIQyafFo-6LIzPDv20-HZx_vXsfXn1-fLD2burshWS01IbWVfcdCiZQ44NR6MqxR1wwWtWiY45JqgxbeMc002rhaKuM9qBa1qo2-q0eLXXncN0v2BMdvBx52LEaYlWa81oPoX-H5IayaTK5Iu_yNtpCWO2YZmSUjNVK5Gp13tqe6sYsLNz8AOEjWXUbqOyONtdVBl9eRCE2ELfhRyHj0eeV7XRUm-_WO65te9x8089e379R_fA54Tx15GHcGezDVXb1adLe7OS3_XF6qO9rn4DMLGxyw</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Rehman, A.</creator><creator>Shakoori, Farah R.</creator><creator>Shakoori, A.R.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201012</creationdate><title>Resistance and uptake of heavy metals by Vorticella microstoma and its potential use in industrial wastewater treatment</title><author>Rehman, A. ; Shakoori, Farah R. ; Shakoori, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4620-8965329fe61de2eb2e97372da2425134f1d14099cbdd18bc8470df98dadbca5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>bioremediation</topic><topic>Exact sciences and technology</topic><topic>General purification processes</topic><topic>heavy-metal resistance</topic><topic>metal uptake</topic><topic>Microstoma</topic><topic>Pollution</topic><topic>Vorticella microstoma</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, A.</creatorcontrib><creatorcontrib>Shakoori, Farah R.</creatorcontrib><creatorcontrib>Shakoori, A.R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, A.</au><au>Shakoori, Farah R.</au><au>Shakoori, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance and uptake of heavy metals by Vorticella microstoma and its potential use in industrial wastewater treatment</atitle><jtitle>Environmental progress</jtitle><addtitle>Environ. Prog. Sustainable Energy</addtitle><date>2010-12</date><risdate>2010</risdate><volume>29</volume><issue>4</issue><spage>481</spage><epage>486</epage><pages>481-486</pages><issn>1944-7442</issn><issn>1944-7450</issn><eissn>1944-7450</eissn><abstract>The ciliate, Vorticella microstoma, showed tolerance against Cd2+ (22 μg/mL), Cu2+ (22 μg/mL), Ni2+ (17 μg/mL), and Hg2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared to the culture grown without metal stress. The decrease in cell population was 60% for Cd2+, 49% for Cu2+, 35% for Ni2+, and 49% for Hg2+ after 8 days of metal stress. The order of resistance to heavy metal, in terms of reduction in the cellular population, was Ni2+ < Hg2+ = Cu2+ < Cd2+. Metal‐uptake capability of the ciliate was worked out for its potential use as bioremediator of wastewater. V. microstoma decreased 72% of Cd2+, 82% of Cu2+, 80% of Ni2+, and 74% of Hg2+ from the medium after 96 h of incubation. V. microstoma was also able to remove 73% of Cd2+, 80% of Cu2+, 83% of Ni2+, and 76% of Hg2+ from the industrial wastewater after 6 days of incubation at room temperature. The multiple heavy metal uptake ability of V. microstoma can be exploited for metal detoxification and environmental clean‐up operations. © 2010 American Institute of Chemical Engineers Environ Prog, 2010</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ep.10450</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-7442 |
ispartof | Environmental progress, 2010-12, Vol.29 (4), p.481-486 |
issn | 1944-7442 1944-7450 1944-7450 |
language | eng |
recordid | cdi_proquest_miscellaneous_888103498 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences bioremediation Exact sciences and technology General purification processes heavy-metal resistance metal uptake Microstoma Pollution Vorticella microstoma Wastewaters Water treatment and pollution |
title | Resistance and uptake of heavy metals by Vorticella microstoma and its potential use in industrial wastewater treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20and%20uptake%20of%20heavy%20metals%20by%20Vorticella%20microstoma%20and%20its%20potential%20use%20in%20industrial%20wastewater%20treatment&rft.jtitle=Environmental%20progress&rft.au=Rehman,%20A.&rft.date=2010-12&rft.volume=29&rft.issue=4&rft.spage=481&rft.epage=486&rft.pages=481-486&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.10450&rft_dat=%3Cproquest_cross%3E888103498%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4620-8965329fe61de2eb2e97372da2425134f1d14099cbdd18bc8470df98dadbca5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766817574&rft_id=info:pmid/&rfr_iscdi=true |