Loading…
Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production
Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late...
Saved in:
Published in: | Biotechnology and bioengineering 2010-10, Vol.107 (2), p.245-257 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083 |
---|---|
cites | cdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083 |
container_end_page | 257 |
container_issue | 2 |
container_start_page | 245 |
container_title | Biotechnology and bioengineering |
container_volume | 107 |
creator | Huerlimann, Roger de Nys, Rocky Heimann, Kirsten |
description | Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257. |
doi_str_mv | 10.1002/bit.22809 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888103672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748929038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</originalsourceid><addsrcrecordid>eNqF0dFv1CAcB_DGaNxt-uA_oMRkMSbX7QdcCzzqReuSRR-8Rd8IpXQy21KBOu-_l1tvZ2JifCKQD78fP75Z9gzDGQYg57WNZ4RwEA-yBQbBciACHmYLAChzWghylB2HcJO2jJfl4-yIQAElLspFNlTe3cZvS9TZ0TZIuyGaIS7R6F0z6Wh_2rhdIjU0qFUxbpHSd6ofXbDRugG5FkXvRqtVh3qrvVPdtTKodR6FdGbyaTwUc8OT7FGrumCe7teT7Or9u836Q375qbpYv7nMdcGJyA0nDAtalwQbMAU2rFEgaq001VpoQWpFTZqRME5b0ITXhjYrZpqmFi0DTk-yV3Pd1PrHZEKUvQ3adJ0ajJuC5JxjoCUj_5VsxUXqRHc1X_4lb9zkhzRGQqxYYUYhodczSj8RgjetHL3tld9KDHIXlkxhybuwkn2-LzjVvWkO8j6dBE73QO3-svVq0Db8cZRgQkuc3Pnsbm1ntv_uKN9ebO5b5_MNG6L5dbih_HdZMsoK-eVjJdcbUnytqkKy5F_MvlVOqmufXnH1mQCmgDnju6x-A0Ylw4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747541730</pqid></control><display><type>article</type><title>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Huerlimann, Roger ; de Nys, Rocky ; Heimann, Kirsten</creator><creatorcontrib>Huerlimann, Roger ; de Nys, Rocky ; Heimann, Kirsten</creatorcontrib><description>Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.22809</identifier><identifier>PMID: 20506156</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algae ; Algal culture (microalgae) ; aquaculture ; biodiesel ; Biological and medical sciences ; Biomass ; Bioreactors - microbiology ; Biotechnology ; Culture ; Culture Media - chemistry ; Drying ; Eukaryota - chemistry ; Eukaryota - growth & development ; Eukaryota - metabolism ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; lipid composition ; Lipids ; Lipids - analysis ; Methods. Procedures. Technologies ; Microorganisms ; Productivity ; Reproduction ; tropical microalgae</subject><ispartof>Biotechnology and bioengineering, 2010-10, Vol.107 (2), p.245-257</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Oct 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</citedby><cites>FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23212361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huerlimann, Roger</creatorcontrib><creatorcontrib>de Nys, Rocky</creatorcontrib><creatorcontrib>Heimann, Kirsten</creatorcontrib><title>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257.</description><subject>Algae</subject><subject>Algal culture (microalgae)</subject><subject>aquaculture</subject><subject>biodiesel</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Culture</subject><subject>Culture Media - chemistry</subject><subject>Drying</subject><subject>Eukaryota - chemistry</subject><subject>Eukaryota - growth & development</subject><subject>Eukaryota - metabolism</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>lipid composition</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Methods. Procedures. Technologies</subject><subject>Microorganisms</subject><subject>Productivity</subject><subject>Reproduction</subject><subject>tropical microalgae</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0dFv1CAcB_DGaNxt-uA_oMRkMSbX7QdcCzzqReuSRR-8Rd8IpXQy21KBOu-_l1tvZ2JifCKQD78fP75Z9gzDGQYg57WNZ4RwEA-yBQbBciACHmYLAChzWghylB2HcJO2jJfl4-yIQAElLspFNlTe3cZvS9TZ0TZIuyGaIS7R6F0z6Wh_2rhdIjU0qFUxbpHSd6ofXbDRugG5FkXvRqtVh3qrvVPdtTKodR6FdGbyaTwUc8OT7FGrumCe7teT7Or9u836Q375qbpYv7nMdcGJyA0nDAtalwQbMAU2rFEgaq001VpoQWpFTZqRME5b0ITXhjYrZpqmFi0DTk-yV3Pd1PrHZEKUvQ3adJ0ajJuC5JxjoCUj_5VsxUXqRHc1X_4lb9zkhzRGQqxYYUYhodczSj8RgjetHL3tld9KDHIXlkxhybuwkn2-LzjVvWkO8j6dBE73QO3-svVq0Db8cZRgQkuc3Pnsbm1ntv_uKN9ebO5b5_MNG6L5dbih_HdZMsoK-eVjJdcbUnytqkKy5F_MvlVOqmufXnH1mQCmgDnju6x-A0Ylw4w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Huerlimann, Roger</creator><creator>de Nys, Rocky</creator><creator>Heimann, Kirsten</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20101001</creationdate><title>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</title><author>Huerlimann, Roger ; de Nys, Rocky ; Heimann, Kirsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algae</topic><topic>Algal culture (microalgae)</topic><topic>aquaculture</topic><topic>biodiesel</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Culture</topic><topic>Culture Media - chemistry</topic><topic>Drying</topic><topic>Eukaryota - chemistry</topic><topic>Eukaryota - growth & development</topic><topic>Eukaryota - metabolism</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>lipid composition</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Methods. Procedures. Technologies</topic><topic>Microorganisms</topic><topic>Productivity</topic><topic>Reproduction</topic><topic>tropical microalgae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huerlimann, Roger</creatorcontrib><creatorcontrib>de Nys, Rocky</creatorcontrib><creatorcontrib>Heimann, Kirsten</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huerlimann, Roger</au><au>de Nys, Rocky</au><au>Heimann, Kirsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>107</volume><issue>2</issue><spage>245</spage><epage>257</epage><pages>245-257</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506156</pmid><doi>10.1002/bit.22809</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2010-10, Vol.107 (2), p.245-257 |
issn | 0006-3592 1097-0290 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_888103672 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algae Algal culture (microalgae) aquaculture biodiesel Biological and medical sciences Biomass Bioreactors - microbiology Biotechnology Culture Culture Media - chemistry Drying Eukaryota - chemistry Eukaryota - growth & development Eukaryota - metabolism Fatty acids Fundamental and applied biological sciences. Psychology lipid composition Lipids Lipids - analysis Methods. Procedures. Technologies Microorganisms Productivity Reproduction tropical microalgae |
title | Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth,%20lipid%20content,%20productivity,%20and%20fatty%20acid%20composition%20of%20tropical%20microalgae%20for%20scale-up%20production&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Huerlimann,%20Roger&rft.date=2010-10-01&rft.volume=107&rft.issue=2&rft.spage=245&rft.epage=257&rft.pages=245-257&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.22809&rft_dat=%3Cproquest_cross%3E748929038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=747541730&rft_id=info:pmid/20506156&rfr_iscdi=true |