Loading…

Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production

Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2010-10, Vol.107 (2), p.245-257
Main Authors: Huerlimann, Roger, de Nys, Rocky, Heimann, Kirsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083
cites cdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083
container_end_page 257
container_issue 2
container_start_page 245
container_title Biotechnology and bioengineering
container_volume 107
creator Huerlimann, Roger
de Nys, Rocky
Heimann, Kirsten
description Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257.
doi_str_mv 10.1002/bit.22809
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_888103672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748929038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</originalsourceid><addsrcrecordid>eNqF0dFv1CAcB_DGaNxt-uA_oMRkMSbX7QdcCzzqReuSRR-8Rd8IpXQy21KBOu-_l1tvZ2JifCKQD78fP75Z9gzDGQYg57WNZ4RwEA-yBQbBciACHmYLAChzWghylB2HcJO2jJfl4-yIQAElLspFNlTe3cZvS9TZ0TZIuyGaIS7R6F0z6Wh_2rhdIjU0qFUxbpHSd6ofXbDRugG5FkXvRqtVh3qrvVPdtTKodR6FdGbyaTwUc8OT7FGrumCe7teT7Or9u836Q375qbpYv7nMdcGJyA0nDAtalwQbMAU2rFEgaq001VpoQWpFTZqRME5b0ITXhjYrZpqmFi0DTk-yV3Pd1PrHZEKUvQ3adJ0ajJuC5JxjoCUj_5VsxUXqRHc1X_4lb9zkhzRGQqxYYUYhodczSj8RgjetHL3tld9KDHIXlkxhybuwkn2-LzjVvWkO8j6dBE73QO3-svVq0Db8cZRgQkuc3Pnsbm1ntv_uKN9ebO5b5_MNG6L5dbih_HdZMsoK-eVjJdcbUnytqkKy5F_MvlVOqmufXnH1mQCmgDnju6x-A0Ylw4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747541730</pqid></control><display><type>article</type><title>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huerlimann, Roger ; de Nys, Rocky ; Heimann, Kirsten</creator><creatorcontrib>Huerlimann, Roger ; de Nys, Rocky ; Heimann, Kirsten</creatorcontrib><description>Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.22809</identifier><identifier>PMID: 20506156</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algae ; Algal culture (microalgae) ; aquaculture ; biodiesel ; Biological and medical sciences ; Biomass ; Bioreactors - microbiology ; Biotechnology ; Culture ; Culture Media - chemistry ; Drying ; Eukaryota - chemistry ; Eukaryota - growth &amp; development ; Eukaryota - metabolism ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; lipid composition ; Lipids ; Lipids - analysis ; Methods. Procedures. Technologies ; Microorganisms ; Productivity ; Reproduction ; tropical microalgae</subject><ispartof>Biotechnology and bioengineering, 2010-10, Vol.107 (2), p.245-257</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Oct 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</citedby><cites>FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23212361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huerlimann, Roger</creatorcontrib><creatorcontrib>de Nys, Rocky</creatorcontrib><creatorcontrib>Heimann, Kirsten</creatorcontrib><title>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257.</description><subject>Algae</subject><subject>Algal culture (microalgae)</subject><subject>aquaculture</subject><subject>biodiesel</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Culture</subject><subject>Culture Media - chemistry</subject><subject>Drying</subject><subject>Eukaryota - chemistry</subject><subject>Eukaryota - growth &amp; development</subject><subject>Eukaryota - metabolism</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>lipid composition</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Methods. Procedures. Technologies</subject><subject>Microorganisms</subject><subject>Productivity</subject><subject>Reproduction</subject><subject>tropical microalgae</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0dFv1CAcB_DGaNxt-uA_oMRkMSbX7QdcCzzqReuSRR-8Rd8IpXQy21KBOu-_l1tvZ2JifCKQD78fP75Z9gzDGQYg57WNZ4RwEA-yBQbBciACHmYLAChzWghylB2HcJO2jJfl4-yIQAElLspFNlTe3cZvS9TZ0TZIuyGaIS7R6F0z6Wh_2rhdIjU0qFUxbpHSd6ofXbDRugG5FkXvRqtVh3qrvVPdtTKodR6FdGbyaTwUc8OT7FGrumCe7teT7Or9u836Q375qbpYv7nMdcGJyA0nDAtalwQbMAU2rFEgaq001VpoQWpFTZqRME5b0ITXhjYrZpqmFi0DTk-yV3Pd1PrHZEKUvQ3adJ0ajJuC5JxjoCUj_5VsxUXqRHc1X_4lb9zkhzRGQqxYYUYhodczSj8RgjetHL3tld9KDHIXlkxhybuwkn2-LzjVvWkO8j6dBE73QO3-svVq0Db8cZRgQkuc3Pnsbm1ntv_uKN9ebO5b5_MNG6L5dbih_HdZMsoK-eVjJdcbUnytqkKy5F_MvlVOqmufXnH1mQCmgDnju6x-A0Ylw4w</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Huerlimann, Roger</creator><creator>de Nys, Rocky</creator><creator>Heimann, Kirsten</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20101001</creationdate><title>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</title><author>Huerlimann, Roger ; de Nys, Rocky ; Heimann, Kirsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algae</topic><topic>Algal culture (microalgae)</topic><topic>aquaculture</topic><topic>biodiesel</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Culture</topic><topic>Culture Media - chemistry</topic><topic>Drying</topic><topic>Eukaryota - chemistry</topic><topic>Eukaryota - growth &amp; development</topic><topic>Eukaryota - metabolism</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>lipid composition</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Methods. Procedures. Technologies</topic><topic>Microorganisms</topic><topic>Productivity</topic><topic>Reproduction</topic><topic>tropical microalgae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huerlimann, Roger</creatorcontrib><creatorcontrib>de Nys, Rocky</creatorcontrib><creatorcontrib>Heimann, Kirsten</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huerlimann, Roger</au><au>de Nys, Rocky</au><au>Heimann, Kirsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>107</volume><issue>2</issue><spage>245</spage><epage>257</epage><pages>245-257</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m⁻² day⁻¹ in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m⁻² day⁻¹) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems. Biotechnol. Bioeng. 2010;107: 245-257.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506156</pmid><doi>10.1002/bit.22809</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2010-10, Vol.107 (2), p.245-257
issn 0006-3592
1097-0290
1097-0290
language eng
recordid cdi_proquest_miscellaneous_888103672
source Wiley-Blackwell Read & Publish Collection
subjects Algae
Algal culture (microalgae)
aquaculture
biodiesel
Biological and medical sciences
Biomass
Bioreactors - microbiology
Biotechnology
Culture
Culture Media - chemistry
Drying
Eukaryota - chemistry
Eukaryota - growth & development
Eukaryota - metabolism
Fatty acids
Fundamental and applied biological sciences. Psychology
lipid composition
Lipids
Lipids - analysis
Methods. Procedures. Technologies
Microorganisms
Productivity
Reproduction
tropical microalgae
title Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth,%20lipid%20content,%20productivity,%20and%20fatty%20acid%20composition%20of%20tropical%20microalgae%20for%20scale-up%20production&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Huerlimann,%20Roger&rft.date=2010-10-01&rft.volume=107&rft.issue=2&rft.spage=245&rft.epage=257&rft.pages=245-257&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.22809&rft_dat=%3Cproquest_cross%3E748929038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5829-e827193b621e0e51e7da09bcac3cc9c92ba3e2902783f0c28be3d47eddb9f7083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=747541730&rft_id=info:pmid/20506156&rfr_iscdi=true