Loading…

Ambient ammonia in terrestrial ecosystems: A comparative study in the Tennessee Valley, USA

Atmospheric ammonia has been shown to degrade regional air quality and affect environmental health. In-situ measurements of ammonia are needed to determine how ambient concentrations vary in different ecosystems and the extent to which emission sources contribute to those levels. The objective of th...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2011-06, Vol.409 (14), p.2768-2772
Main Authors: Allen, Ridwaana, Myles, LaToya, Heuer, Mark W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atmospheric ammonia has been shown to degrade regional air quality and affect environmental health. In-situ measurements of ammonia are needed to determine how ambient concentrations vary in different ecosystems and the extent to which emission sources contribute to those levels. The objective of this study was to measure and compare ammonia concentrations in two Tennessee Valley (USA) ecosystems: a forested rural area and a metropolitan site adjacent to a main transportation route. Integrated samples of atmospheric ammonia were collected with annular denuder systems for ~ 4 weeks during the summer of 2009 in both ecosystems. Ancillary measurements of meteorological variables, such as wind direction and precipitation, were also conducted to determine any relationships with ammonia concentration. Measurements in the two ecosystems revealed ammonia concentrations that were mostly representative of background levels. Arithmetic means were 1.57 ± 0.68 μg m − 3 at the metropolitan site and 1.60 ± 0.77 μg m − 3 in the forest. The geometric mean concentrations for both sites were ~ 1.46 μg m − 3 . Wind direction, and to a lesser extent air temperature and precipitation, did influence measured concentrations. At the metropolitan site, ammonia concentrations were slightly higher in winds emanating from the direction of the interstate highway. Meteorological variables, such as wind direction, and physical factors, such as topography, can affect measurement of ambient ammonia concentrations, especially in ecosystems distant from strong emission sources. The 12-h integrated sampling method used in this study was unable to measure frequent changes in ambient ammonia concentrations and illustrates the need for measurements with higher temporal resolution, at least ~ 1–2 h, in a variety of diverse ecosystems to determine the behavior of atmospheric ammonia and its environmental effects. ► Vehicles with catalytic converters can produce ammonia in exhaust emissions. ► We compare ammonia levels near a busy highway to those in a remote forest ecosystem. ► Ammonia levels were similar, indicating vehicles were not a significant source. ► Slightly higher ammonia was measured in winds from the direction of the highway.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2011.04.017